
This Dissertation

entitled

EXPLOITING LOCALITYWITH QTHREADS FOR PORTABLE

PARALLEL PERFORMANCE

typeset with nddiss2ε v3.0 (2005/07/27) on October 21, 2009 for

Kyle Bruce Wheeler

This LATEX2ε classfile conforms to the University of Notre Dame style guide-
lines established in Spring 2004. However it is still possible to generate a non-
conformant document if the instructions in the class file documentation are
not followed!

Be sure to refer to the published Graduate School guide-
lines at http://graduateschool.nd.edu as well. Those
guidelines override everything mentioned about format-
ting in the documentation for this nddiss2ε class file.

It is YOUR responsibility to ensure that the Chapter titles and Table caption
titles are put in CAPS LETTERS. This classfile doesNOT do that!

This page can be disabled by specifying the “noinfo” option to the class invoca-
tion. (i.e.,\documentclass[…,noinfo]{nddiss2e})

This page is NOT part of the dissertation/thesis, but MUST be
turned in to the proofreader(s) or the reviwer(s)!

nddiss2ε documentation can be found at these locations:

http://www.gsu.nd.edu
http://graduateschool.nd.edu

http://graduateschool.nd.edu
http://www.gsu.nd.edu
http://graduateschool.nd.edu

EXPLOITING LOCALITYWITH QTHREADS FOR PORTABLE PARALLEL

PERFORMANCE

A Dissertation

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Kyle Bruce Wheeler

Douglas Thain, Director

Graduate Program in Computer Science and Engineering

Notre Dame, Indiana

October 2009

EXPLOITING LOCALITYWITH QTHREADS FOR PORTABLE PARALLEL

PERFORMANCE

Abstract

by

Kyle Bruce Wheeler

Large scale hardware-supportedmultithreading, an attractivemeans of in-

creasingcomputationalpower, benefits significantly from lowper-threadcosts.

Hardware support for lightweight threads and synchronization is a developing

area of research. Shared memory parallel systems are flourishing, but with a

wide variety of architectures, synchronization mechanisms, and topologies.

Portable abstractions are needed that provide basic lightweight thread con-

trol, synchronization primitives, and topology information to enable scalable

application development on the full range of shared memory parallel system

designs. Additionally, programmers need to be able to understand, analyze,

tune, and troubleshoot the resulting large scale multithreaded programs.

This thesis discusses the implementationof scalable software formassively

parallel computersbasedon locality-aware lightweight threadsand lightweight

synchronization. First, this thesis presents an example lightweight threading

API, the qthread library, that supports the necessary features in a portable

manner. This exposes the need for a structural understanding of parallel ap-

plications. ThreadScope, a tool and visual language for structural analysis of

multithreaded parallel programs is presented to address this need. A strong

Kyle Bruce Wheeler

understandingof algorithmstructure combinedwitha locality-awareportable

threading library leads to the development of three distributed data struc-

tures—amemory pool, an array, and a queue—that adapt to system topology

at runtime. Such adaptive data structures enable the development of three ex-

ampleadaptive computational templates—sorting, all-pairs, andwavefront—

that hide the parallelism details without sacrificing scalable performance.

Tomy ever-loving wife, Emily, and everyone who has had patience with me

and confidence in me. And to our daughter, Julia, for reminding me why I

needed to graduate in the sweetest way possible.

ii

CONTENTS

FIGURES . vi

ACKNOWLEDGMENTS . ix

CHAPTER 1: INTRODUCTION . 1
1.1 Motivation . 1
1.2 Problem . 3
1.3 Contribution . 7
1.4 Approach and Outline . 8

CHAPTER 2: RELATEDWORK . 11
2.1 Threading . 11

2.1.1 Threading Concepts . 12
2.1.2 Lightweight Threads . 13

2.2 Application Structure and Visualization 14
2.3 Locality-Aware Data Structures . 17

2.3.1 Data &Memory Layout . 17
2.3.2 Locality Information . 20
2.3.3 Data Structures . 21

2.4 Application Behavior . 22

CHAPTER3: QTHREADS:COMBININGLOCALITYANDLIGHTWEIGHT
THREADING . 25
3.1 Introduction . 25
3.2 Background . 26
3.3 Qthreads . 30

3.3.1 Semantics . 31
3.3.2 Basic Thread Control and Locality 35
3.3.3 Synchronization . 38
3.3.4 Threaded Loops and Utility Functions 41

3.4 Performance . 44

iii

3.4.1 Implementation Details . 45
3.4.2 Micro-benchmarks . 46

3.5 High Performance Computing Conjugate Gradient Benchmark 49
3.5.1 Code Modifications . 49
3.5.2 Results . 51

3.6 Multi-Threaded Graph Library Benchmarks 53
3.6.1 Qthread Implementation of ThreadStorm Intrinsics . . . 54
3.6.2 Graph Algorithms and Performance 55
3.6.2.1 Breadth-First Search . 56
3.6.2.2 Connected Components 58
3.6.2.3 PageRank . 60

3.7 Conclusions . 61

CHAPTER4: VISUALIZINGAPPLICATIONSTRUCTUREWITHTHREAD-
SCOPE . 63
4.1 Introduction . 63
4.2 Methodology . 65

4.2.1 Tracing . 68
4.2.2 The Event Description . 71
4.2.3 Visual Representation . 73

4.3 Memory Access Patterns . 74
4.3.1 Improving Visual Clarity . 75
4.3.2 Object Condensing . 77
4.3.3 Memory Re-Use . 80
4.3.4 Condensing Structure with A Priori Knowledge 83

4.4 Isolating Potential Problems . 84
4.4.1 Structural Threading Problems 85
4.4.1.1 Deadlocks . 85
4.4.1.2 Race Conditions . 86
4.4.2 Graph-based Problem Isolation 89

4.5 Parallel Computation/Communication Models 90
4.6 Conclusion . 94

CHAPTER5: EXPLOITINGMACHINETOPOLOGYWITHADAPTIVEDIS-
TRIBUTED DATASTRUCTURES . 95
5.1 Introduction . 95
5.2 Parallel Architectures . 97
5.3 Distributed Data Structures . 100

5.3.1 Distributed Memory Pool 100
5.3.1.1 Design . 101
5.3.1.2 Benchmark . 103
5.3.1.3 Results . 104

iv

5.3.2 Distributed Array . 105
5.3.2.1 Design . 105
5.3.2.2 Benchmarks . 107
5.3.2.3 Results . 107
5.3.3 Distributed Queue . 111
5.3.3.1 Design . 113
5.3.3.2 Benchmark . 116
5.3.3.3 Performance . 116

5.4 Conclusion . 120

CHAPTER 6: ADAPTIVE COMPUTATIONAL TEMPLATES 121
6.1 Introduction . 121
6.2 Sorting . 123

6.2.1 A Parallel Partition Algorithm 124
6.2.2 Performance . 127
6.2.2.1 Benchmark . 128
6.2.2.2 Results . 128

6.3 All-Pairs . 130
6.3.1 Design . 132
6.3.2 Performance . 135
6.3.2.1 Benchmark . 136
6.3.2.2 Results . 136

6.4 Wavefront . 138
6.4.1 Design . 140
6.4.2 Performance . 143
6.4.2.1 Benchmark . 144
6.4.2.2 Results . 144

6.5 Conclusion . 146

CHAPTER 7: CONCLUSION . 148
7.1 Recapitulation . 148
7.2 Future Work . 150

7.2.1 Programming Interface . 150
7.2.2 Debugging and Tuning . 151
7.2.3 Data Structures . 152
7.2.4 Computational Templates 153

7.3 Postscript . 154

BIBLIOGRAPHY . 155

v

FIGURES

1.1 The von Neumann Bottleneck . 4

3.1 The Qthread API . 31

3.2 The Shepherd/Qthread Relationship 37

3.3 qt_loop() and C Equivalent . 42

3.4 qt_loop_balance()User Function Example 42

3.5 qt_loopaccum_balance() and C Equivalent 43

3.6 Microbenchmarks on a dual PPC 47

3.7 Microbenchmarks on a 48-node Altix 48

3.8 HPCCG’s WAXPBY Phase . 50

3.9 Structure for Passing WAXPBY Arguments 50

3.10 Worker Function for Threading WAXPBY 51

3.11 ThreadedWAXPBY . 51

3.12 HPCCG on a 48-CPU SGI Altix SMP 52

3.13 The Basic BFS Algorithm . 57

3.14 Breadth-First Search . 58

3.15 Connected Components . 59

3.16 Inner Loop of PageRank in the MTGL on the XMT 61

3.17 PageRank . 62

4.1 Basic ThreadScope Stage Example 67

4.2 Structure of a Cilk Application With a Bottleneck 73

4.3 Structure of Cilk Bucketsort . 74

4.4 Structure of qt_loop_balance() Spawning Ten Threads with C
Source Code . 76

4.5 Structure Graph of 3% of the HPCCG Benchmark 78

vi

4.6 qt_loop_balance() Spawning Ten Threads, Memory Limited to
Multiple-Accesses . 79

4.7 Structural Impact of Memory Access and Identity Tracking . . . 81

4.8 Simple Hash Table Application, with Memory Object Condens-
ing Options . 84

4.9 Identification of Potential Deadlock via Structure 87

4.10 Identifying Race Conditions via Structure 88

4.11 Race Condition Isolation: Presentation Options 90

4.12 Structure of 10%of Cilk Bucketsort, IncludingMemoryReferences 92

4.13 Structure of a Flow-based Application 93

5.1 System Topologies . 97
5.2 Distributed Data Structure API (Abridged) 101

5.3 Memory Pool Scaling . 104
5.4 Distribution Pattern Scaling . 108
5.5 Segment Size . 110
5.6 Element Size/Alignment Scaling . 112
5.7 Scaling Simple Ordered Queues . 117
5.8 Scaling Distributed Queues . 118
5.9 Scaling Data-Laden Distributed Queues 119

6.1 Hoare QuickSort Partition Algorithm 125

6.2 Basic Parallel Partition Scheme . 126

6.3 Cache-line Aware Parallel Partitioning 128

6.4 Libc’s qsort()and qutil_qsort()Sorting 1BillionFloatingPoint
Numbers . 129

6.5 The All-Pairs Problem . 131

6.6 The Generic All-Pairs Structure, 5×5 Input 133
6.7 The Qthread Library’s All-Pairs Interface 133

6.8 Impact of Distribution on All-Pairs Structure 134

6.9 All-Pairs, 30,000×30,000 Pairs with Several Distribution Methods 137
6.10 All-Pairs Work Unit Placement Heuristics 138

6.11 The Wavefront Abstraction . 139

6.12 Naïve Wavefront ThreadScope Structure, 5×5 Input 141

6.13 The Qthread Library’s Wavefront Interface 142

vii

6.14 The Wavefront Lattice Design . 143

6.15 Wavefront, Generating a 70,000×70,000 Lattice 145

viii

ACKNOWLEDGMENTS

This work was funded in part by Sandia National laboratories. Sandia is a

multiprogram laboratory operated by Sandia Corporation, a Lockheed Mar-

tin Company, for the United States Department of Energy’s National Nuclear

Security Administration under contract DE-AC04-94AL85000.

ix

CHAPTER 1

INTRODUCTION

1.1 Motivation

Modern supercomputers have largely taken the route of parallel compu-

tation to achieve increased computational power [3, 7, 18, 51, 78, 101, 176].

Increased parallelism leads to increased complexity, and is more difficult to

program. Inmanymodern supercomputers, sharedmemory has been traded

for distributedmemory because of the cost and complexity involved in scaling

shared memory to the size systems needed for supercomputing applications.

This design is vulnerable to an obvious bottleneck: the communication be-

tween parallel nodes.

The most persistent and troublesome problem with communication in

shared memory systems has been latency: the processor is faster than the

storage mechanism and must wait for it to return data for use in computa-

tion. Whether the disparity is high-speed vacuum tubes waiting for high-den-

sity (low speed) drum memory, or high-speed CPUs waiting for high-density

(low speed) DRAM, the problem is the same. This is a fundamental vulnera-

bility in the vonNeumann computationalmodel, because of the separation of

logic from storage and their dependence on one another. Computation can

only proceed at the pace of the slower of the two halves of the computational

1

model. The slower has historically been thememory, so the problem is gener-

ally termed “memory latency” or the “memory wall”. Memory latency is par-

ticularly problematic with large data-dependent computation [115, 152, 183].

There are only two fundamental approaches to addressing the problem

of memory latency: either tolerate the problem or avoid the problem. The

“toleration” approach focuses on the overall throughput of the system, and

masks the latency of requesting things frommemory by performing unrelated

useful work while waiting for each memory operation to complete. Examples

of this idea include the work in Simultaneous Multithreading (SMT) [82, 118]

anddynamic scheduling or out-of-order execution [75], both ofwhich identify

work that is sufficiently unrelated that it can be performed at the same time.

The more unrelated or independent work that needs to be accomplished, the

greater the ability to hide the latency involved in memory operations.

The other approach, “avoidance”, generally uses specialized hardware to

prevent latency effects. A common example of such specialized hardware is a

memory cache, which provides a small and very fast copy of the slower high-

density memory. The fundamental characteristic of computation that allows

caches to work well is temporal locality: the smaller the set of data in use at

a time, the more easily it can be stored in a small, fast cache. As caches are

smaller than main memory, and generally smaller than most data sets used

in computation, they do not solve the general problem, but do avoid it to the

extent that the working set of information for any contiguous subset of the

program’s instructions can fit within the cache.

2

1.2 Problem

In 1946 Von Neumann himself, with Burks and Goldstine, recognized the

problem of latency and proposed the cache-based avoidance technique [21]

in a paper that is commonly cited in computer architecture texts [75, 140]:

Ideallyonewoulddesire an indefinitely largememorycapacity such
that anyparticular…[memory]word…wouldbe immediately avail-
able. …It does not seem possible physically to achieve such a ca-
pacity. We are therefore forced to recognize the possibility of con-
structing a hierarchy of memories, each of which has greater ca-
pacity than the preceding but which is less quickly accessible.

As predicted, this bottleneck has been a powerful consideration in com-

puter design and architectural research for the past six decades, with eachnew

computer architecture seeking to address the problem in one way or another.

Despite this effort, the problem has only gotten worse with time. Figure 1.1

depicts the progression of the problem in simple terms, based on informa-

tion from Intel’s processor line, starting in 1971 with the 4004 and continuing

through the Pentium IV in 2006.

Caching is one of the most well-known and well-studied ways of address-

ing the von Neumann bottleneck. As such, it has drastically affected the de-

sign of compilers and software by providing a simple metric for optimizing

performance: temporal locality. To increase temporal locality, memory “hot

spots” are created intentionally by compilers and software designers so that

frequently used datawill fit within the small amount of fastmemory available.

While hot spots haveproved extremely successful in simple vonNeumann sin-

gle-processor designs, supporting coherent caches in parallel systems places

a significant burden on memory bandwidth [54]. Worse, the more nodes in

the parallel system, the more expensive this cache coherency overhead be-

3

1970 1980 1990 2000 20100.1

1

10

100

1,000

10,000

Year

Ti
m

e
(n

s)
 o

r R
at

io

The von Neumann Bottleneck

Processor Clock Cycle Time
DRAM Access Time
DRAM:Processor Ratio

Figure 1.1. The von Neumann Bottleneck. [122]

comes. Because cache coherency has such high overhead in parallel systems,

typical parallel software avoids sharing data implicitly and at a fine-grained

level. Instead, data is commonly shared explicitly and large chunks of it at a

time [61]. This leads some supercomputer designers to do away with proces-

sor cacheentirely in largeparallel sharedmemory computers [38], a designde-

cision which invalidates the wisdom of creating memory hot-spots. However,

because of the physical reality that in a large enough system not all memory

addresses have the same latency, randomly distributing data ranges across all

memory banks [38] does not take advantage of what ranks of locality naturally

exist in hardware design. Additionally, this decision removes a major tool for

addressing the problem of the memory wall.

4

Large-scale shared-memory computers that expose locality are typically

referred to as cache-coherent non-uniform memory access (ccNUMA) sys-

tems. This is a reference to two fundamental aspects of the design of such sys-

tems. First, while they have multiple processors, each processor has its own

“local” block of memory that is accessible from all processors and whose ef-

fective access latency depends on the relative location of the accessor. The

latency is lowest when accessing that memory from the nearest processor,

higher when accessing from nearby processors, and higher still from proces-

sors further away. Thus, the ratio of processor speed to memory latency is

significantly higher for more distant blocks of memory than for more local

blocks. Second, each processor has a cache hierarchy, and these caches work

together to provide a coherent image of the state of memory. Maintaining

this coherence has a significant overhead, and serves generally to increase the

latency ofmemory operations. Due to the prohibitive complexity of program-

ming shared-memory systemswithout a coherent view ofmemory, coherency

is generally regarded as necessary. Historically, memory latency in ccNUMA

machines has been a low-priority issue [132] because the range of latencies

has been relatively low. However, as ccNUMA machines have gotten larger

the range of memory latencies has increased. Additionally, these variations

have become more important as the processor-memory speed ratio has in-

creased, allowing more and more processor cycles fit into a given time slice

and thereby significantly increasing the relative penalty imposed by non-local

memory accesses.

Someof theproblems inherent in current ccNUMAsystemsmaybeavoided

with a new architecture. One way of reducing memory latency is to integrate

5

the processor with its memory. If local memory access is sufficiently fast, the

system does not require a cache, and thus can avoid the overhead associated

with maintaining cache coherency in a parallel system. This idea has been

examined by projects such as the EXECUBE [98] and its processor-in-mem-

ory (PIM) successors [18, 19, 99, 123], IRAM [141], Raw [179], Smart Mem-

ories [111], Imagine [147], FlexRAM [93], Active Pages [138], DIVA [69], Mit-

subishi’s M32R/D [135], and NeoMagic’s MagicGraph [126] chips, to name a

few.

The major attraction of integrating memory and processor is that it brings

the data much closer to where it will be used, and thus provides the opportu-

nity for both increasing bandwidth and decreasing latency. The PIM design

concept attacks the von Neumann bottleneck directly; by moving the proces-

sor closer to thememory—avoiding cache, bus, andmemory-controller over-

head—the latency of accessing local memory is decreased. The use of many

small processors rather than a single central processor also increases the po-

tential for parallel execution, which improves tolerance of memory latency as

well.

It is conceivable to build a shared memory parallel computer almost en-

tirely out of PIM units. Such a computer would have an extremely large num-

ber of parallel computational nodes, however each node would likely not be

as fast or as complex as a modern central processor. This unusual architec-

ture would place unusual demands on its software and on the developers who

write that software, in largepart because the standard issues of scheduling and

data layout are combined.

6

In a NUMA system as potentially dynamic as a PIM-based sharedmemory

system, placement of data becomes notmerely a crucial problem, but a prob-

lem for which the optimal answermay change over the course of a given set of

computations. Of course, commodity systems are not generally non-uniform,

and do not provide all of the same hardware-based parallelism features that

larger systems do. Thus, developing software for large shared-memory sys-

tems frequently requires access to those systems. This aspect of the general

programming problem is the target of this thesis:

How can programmers create applications that take full advantage
ofnewhardware-acceleratedparallelism features in large-scale shared
memory environments and topologies without sacrificing portabil-
ity or performance on commodity systems?

1.3 Contribution

The area of cache-aware data-layout is a well-researched area [12], be-

ginning even before memory hierarchies were first introduced in the early

1950’s [149]. At the time, programmers needed to manage the memory hi-

erarchies themselves, explicitly copying data from drum to core memory and

back. In 1962, Kilburn et al. [95] proposed automatic management of core

memory, which was first implemented in the Atlas computer. Similarly, as

a skilled parallel programmer may well be able to plan data layout for large

programs and manage it to provide optimal performance on any size system,

it is both more convenient and more portable to do this automatically, both

as is currently done at compile time and as this thesis demonstrates, at run-

time. While runtime reorganizationwasproposed anddemonstrated on serial

computation by Ding et al. [48], and data-agnostic page-based memory mi-

7

gration has been thoroughly studied [133], coordination between scheduling

decisions and data layout based on computational patterns has not been in-

vestigated. In addition to convenience and portability, runtime adaptation to

system topology enables the exploitation of domain-specific knowledgewhile

reducing the amount of detailed knowledge of the system required to leverage

the hardware layout of any particular large NUMA system.

The primary contribution of this work is a scalable, portable, and flexi-

ble approach to fine-grained large-scale data and computational locality that

adapts to provide performance on a wide range of NUMA topologies. This

approach has four basic components: the qthreads lightweight threading in-

terface, an examination of algorithm structure via ThreadScope, three basic

data-parallel distributed data structures, and three example parallel compu-

tation templates.

1.4 Approach and Outline

In order to adapt to multiple topologies and fully exploit available locality,

software must be able to locate both data and computational threads in spe-

cific locations, and must be able to determine the latency penalties of com-

munications between locations. The goal of careful data and thread place-

ment is to minimize the number of remote memory operations. In order to

provide the greatest flexibility to fully exploit runtime adaptation of computa-

tion and data, it is necessary to expose as many parallel operations as possi-

ble in a given set of code so that each independent operation can potentially

be executed in the optimal location. Specifically, a programming model that

supports lightweight threading is necessary to allow programmers to express

8

the fullmeasure of parallelism in their algorithms. This threadingmodelmust

make locality a first-class aspect of each thread, so that the location of a thread

can be used to make decisions about the work that it will do. Existing light-

weight threading models explicitly avoid making locality guarantees and so a

new lightweight threading interface that meets this requirement, the qthread

interface [182], is presented in Chapter 3. This chapter also presents a library-

based UNIX implementation of the interface.

The next step in leveraging machine layout is understanding the structure

of the algorithms being used. Determining algorithm structure, independent

of hardware, is a daunting task. ThreadScope [181], a visualization technique

tailored for a lightweight threading environment, is presented in Chapter 4.

It uses existing tracing tools—including Dtrace [24], Apple’s libamber [6], the

SST simulator [148], or an instrumented version of the qthread library— to

instrument multithreaded applications and uses those traces to visualize the

logical structure. The logical structure of multithreaded programs does not

rely on a specific order of execution other than that specified and enforced by

synchronization methods.

Building parallel applications that exploit the design of a given parallel sys-

tem is a complex task, parallel applications can be built upon simple parallel

data structures. Basic parallel data structures, such as distributed arrays, are

key tools in parallel software design. Several data structure designs, imple-

mented in thenew lightweight threading environment, arepresented inChap-

ter 5. These data structures hide the complexity of data locality and enable the

programmer to easily take advantage of a wide range of hardware topologies.

This chapter presents the design of the “qpool”, a distributed memory pool,

9

the “qarray”, a distributed array, and the “qdqueue”, a distributed end-to-end

ordered queue. All three designs are demonstrated on three dramatically dif-

ferent sharedmemory architectures: a small four-core developerworkstation,

a high throughput 128-core server, and a 48-node ccNUMA machine. The

qpool can be up to 155 times faster than the standard malloc() implemen-

tation and provides location-specific memory. The qarray supports strong

scaling, providing a 31.2 times performance improvement with 32 ccNUMA

nodes while iterating over its elements. At scale, the qdqueue demonstrates

up to a 47 times improvement over a strictly-ordered lock-free queue, and an

8.3 times improvement over the performance of state-of-the-art concurrent

queues on a large ccNUMA system.

The data structures presented inChapter 5 are used to build larger applica-

tion templates in Chapter 6. Three templates are presented: sorting, all-pairs,

and wavefront. The sorting template demonstrates portable design choices

in a parallel quicksort implementation, particularly for avoiding false shar-

ing [53]. The all-pairs template demonstrates an adaptive technique for effi-

cient distribution of localized input data among parallel tasks. The wavefront

template demonstrates the use of such an adaptive distribution technique for

chained computations.

10

CHAPTER 2

RELATEDWORK

2.1 Threading

This researchdraws fromseveral categoriesofpriorwork, including thread-

ing interfaces, data structures, methods of discovering locality, and others.

Standard threading interfaces—such as POSIX threads (pthreads) [136] and

Windows Threads [86, 178]—are heavyweight threads. They provide several

features andguarantees that impose significantoverhead. For example, a stan-

dard POSIX thread is normally able to receive asynchronous interrupt-based

signals. Because multiple signals can arrive at the same time, there is an in-

herent vulnerability to race conditions which must be dealt with, generally

through the use of a per-thread signal stack. In order to receive such signals,

the thread must be interruptible, which requires the ability to save all current

thread state at any time so that it canbe restarted. To thenhandle signals, each

threadmust have an interrupt vector that can be triggered by the signal. All of

this either requires an OS representation of every thread or requires user-level

signal multiplexing [56]. The drawbacks of heavyweight, kernel-supported

threads—such as POSIX and Windows threads—are well-known [9], leading

to the development of a plethora of user-level threading designs. Threads in

a large-scalemultithreading context often do not require any of the expensive

11

guarantees and features that such heavyweight threads provide, such as per-

thread process identifiers (PIDs), signal vectors, preemptive multithreading,

priority-based scheduling, and the ability to remotely cancel threads, among

others. Threads without these features and guarantees are, for the purposes

of this thesis, dubbed “lightweight” threads.

2.1.1 Threading Concepts

The coroutine [33, 153] is a generalization of subroutines that is often con-

sidered to be a threading concept, though it is not truly parallel. As a general-

ization of subroutines, coroutines establish a type of virtual threading even in

a serial-execution-only environment, by specifying alternative contexts that

get used at specific times. Coroutines can be viewed as themost basic form of

cooperative multitasking, though they can use more synchronization points

than just context-switch barriers when run in an actual parallel context. Be-

cause they require few guarantees, coroutines can be quite lightweight. One

of the more powerful details of coroutines is that one routine specifies which

routine gets processing time next. The generalized form of this behavior is

known as “continuations” [72, 116]. Continuations, in the most broad sense,

are primarily a way ofminimizing state during blocking operations. When us-

ing heavyweight threads, whenever a thread does something that causes it to

stop executing, its full context—complete with its stack, signal stack, a full set

of processor registers, and any other thread-specific data—are saved so that

when the thread becomes unblocked it may continue as if it had not blocked.

This is sometimes described as a “first-class continuation.” However, the con-

tinuation concept is more general. In themost general form, the programmer

12

mayspecify thatwhena threadblocks, it actually exits. When the threadwould

have unblocked, a new thread is created with programmer-specified inputs.

This requires the programmer to explicitly save any necessary state while dis-

posing of any unnecessary state.

There are threading concepts that make even fewer guarantees. Proto-

threads [52, 68] assert that outside of the active set of CPU registers there is no

thread-specific state at all. This makes them extremely lightweight but limits

their utility and flexibility. For example, at most, only one of the active stack-

less threads can call a function. These limitations have repercussions for ease-

of-use and have limited their adoption.

2.1.2 Lightweight Threads

Several user-level threading designs qualify as lightweight, but have one

of two major drawbacks: they either are not designed for large-scale locality-

aware threading, or they require a special compiler (or both). Python stackless

threads [145], a protothreads design, are an example threading design with

the first drawback. Putting aside issues of usability with their inflexible min-

imal state, which are significant, the interface allows for no method of apply-

ing data parallelism to the stackless threads: a thread may be scheduled on

any processor. Many other threading designs, from nano-threads [37, 114] to

OpenMP [137], similarly lack a sufficient means of allowing the programmer

to specify locality.

Programming languages such as Chapel [23], Fortress [5], and X10 [29], or

modifications to existing languages such as UPC [55], require special compil-

ers. As such, they have capabilities that library-based approaches donot, such

13

as the ability to enforce implicit locality as a function of the programming en-

vironment and to automatically detect independent loop iterations. These

languages can provide more convenient parallel semantics than approaches

based on library calls, but break compatibility with existing large codes.

Cilk [16] and OpenMP [137] are examples of interfaces that provide rela-

tively convenient lightweight threads. Cilk in particular uses a continuation-

style approach that helpsminimize state-basedoverhead. They arebothmod-

ifications of C designed to make threading a basic feature of the language.

However, they ignore data locality, forcing the programmer to rely on the op-

erating system’s scheduler to keep each thread near the data it ismanipulating

andon the operating system’s pagemigrationpolicies for keepingdata close to

the threads operating upon it. At the same time, however, they both use work-

stealing scheduling algorithms that assume that all tasks can be performed

equally well on any processor. This assumption, which is an invalid assump-

tion on NUMA machines with a high variability in latency, undermines the

efforts of the operating system to keep threads and their data close together

and leads to poor scheduling decisions.

2.2 Application Structure and Visualization

In order to fully leverage locality and the available hardware, it is necessary

to understand the structure of the algorithms being used in a way that is in-

dependent of any specific hardware. As Goldstein et al. [66] discussed, most

threading models conflate logical parallelism and actual parallelism. This se-

mantics problem typically requires that programmers tailor the expression

of algorithmic parallelism to the available parallelism, thereby forcing pro-

14

grammers to either submit to unnecessary overhead when there is less par-

allel hardware than the software was designed for or forgo the full use of the

available hardwarewhen there ismore available parallelism thanwas planned

for. The essence of adapting complex software to equally complex hardware is

bridging this divide efficiently. This bridge can only be made through under-

standing the structure of both hardware and software. While hardware can be

complex, software algorithmsarenot boundby spacial dimensions and canbe

evenmore complex. Visualization is a commonmeans of presenting complex

information so that it can be understood.

Multithreaded applications have ahistory of being difficult to visualize, be-

cause there are few strict rules about their behavior. Some of the oldest paral-

lel visualizers, such as Pablo [62] and Tapestry [112], are essentially monitor-

ing programs that keep track of statistics relating to parallel execution such

as communication bandwidth and latencies. More recent variations, such

as Bedy’s [13] thread monitoring system and the Gthread [185] visualization

package from the PARADE [164] project give somewhat more detailed infor-

mation about locks and thread status. Gettingmore detail has typicallymeant

tailoring the visualizer to a particular environment. For example, the Gthread

system works only on Kendall Square Research (KSR) machines, Eden [15] is

specific to Haskel programs, and Pajè [94] is a visualization system designed

for data-flow programs such as those written in the Athapascan [63] environ-

ment. Pajè monitors long-lived parallel threads, diagrams blocked states, and

illustrates message transfer and latency. Assuming that threads are relatively

few and long-lived is typical of many parallel visualizers. In many cases, such

as with ParaGraph [73], PARvis [108], and Moviola [105], the visualization as-

15

sumes one thread per node, and then focuses on the communication and

blocked status of those “threads”. They provide time-process communica-

tion graphs of explicit communication events that make it easy to identify ba-

sic communication problems and patterns. Explicit communication is typical

of the MPI programming model andMPI visualization tools like Vampir [124]

provide similar information in similar-looking graphs. The visualization used

in this thesis uses communication behavior to help define structure, rather

than presenting a structure based on the hardware layout.

Charting the structure of an application opens the possibility of using that

structure to check forprogrammingerrors. Asmultithreadedapplicationshave

becomemore popular, automated correctness checkers have received a great

deal of interest. In some cases these tools stem from serial application cor-

rectness checkers. This is especially true of memory checkers such as IBM’s

Rational Purify [163] and Valgrind [127]. Valgrind is particularly interesting

because it has developed a validation component, Helgrind [87], to perform

validation of common threading operations andwatch for potential race con-

ditions. Another similar tools is Intel’s Thread Checker [36]. These tools are

all dynamic program analysis tools, similar to the tracing tools that generate

the event description logs used in this thesis. The approach used here is more

akin to shape analysis, such as done by Sagiv et al [150], because of the way

it renames memory objects based on access behavior, though this approach

relies primarily on thread behavior to informmemory object definition.

16

2.3 Locality-Aware Data Structures

With a firm understanding of algorithm structures, it becomes possible to

design data structures that can bridge between hardwarememory layouts and

algorithm structures.

2.3.1 Data &Memory Layout

Work inmemory layout generally attempts tooptimize foroneof two things:

either cache efficiency or parallelism. Cache efficiency work typically relies

on the reuse-distance metric—the number of instructions between uses of a

given piece of data—to determine the success of the layout [172, 174], which

biases data layout toward the creation of hot-spots [45, 58]. Optimizing data

layout for a parallel environment [20, 70, 104], however, relies upon the obser-

vation that hot-spots prevent multiple nodes from efficiently accessing data

concurrently and incurs large cache coherency overheads [10, 54]. Such prob-

lems are exacerbated by the “false-sharing” [53] issue, wherein independent

data that shares the smallest resource block managed by the cache (a cache-

line) is indistinguishable from shared data and thus parallel access to such

independent data incurs cache coherency overhead as if it was shared. Thus,

data layout for parallel execution requires a bias away from the creationof hot-

spots. For example, Olivier Temam developed a compile-time technique for

eliminating cache conflicts (hot-spots) through the use of data copying [173].

InaNUMAsharedmemoryparallel systembothgoals apply. Becausemem-

ory latency is lower when accessing local data, it is preferable for each thread

to execute as close to the data it manipulates as possible. Within that local

memory, accesses to independent memory blocks are fastest when reuse-dis-

17

tance is minimized. At the same time, shared data must be kept separate so

that it can to be accessed in parallel while incurring as little cache coherence

overhead as possible. These goals are inherently opposed. The optimal layout

must balance the two goals according to the granularity of parallelism avail-

able and the amount of parallelism in use during a specific execution. Byoun-

gro So, et al. demonstrated the performance potential of customized data lay-

out algorithms for different applications [162]. Ding, et al. demonstrated that

runtime modifications to data layout can provide significant improvements

in application performance, particularly when the application’s memory be-

havior changes over time [48]. It seems obvious that integrating custom data

layout algorithms with standardized application behavior abstractions would

yield significant performance improvements.

Layout techniques forNUMAshared-memorymachinesareayoungerfield

than general-purpose optimization. In 2001, Jie Tao et al. developed amethod

for analyzing NUMA layouts in simulation [170] and found that applications

that are not tailored for the layout of the specific NUMA machine frequently

face severe performance penalties [169]. This expanded upon and confirmed

work in 1995byChapin, et al. whoanalyzedUNIXperformanceonNUMAsys-

tems [28]. Abdelrahman, et al., amongothers, havedevelopedcompiler-based

techniques for arrangingarrays inmemory to improveperformanceonNUMA

machines [1], however the techniques are static and in addition to working

only for arrays of data or other language-supported data types, they also op-

timize for specific memory layouts or a specific machine size and a specific

level of parallelism.

18

In shared memory systems, the cost of communication for remote mem-

ory references is the single largest factor in application performance [79, 125,

142, 151, 158, 159]. Counterintuitively, locality, in the sense of NUMA mem-

ory topology, is generally independent of threading interfaces. This is prob-

ably a result of the relatively low variance in memory access latency of previ-

ous shared-memory machines. That observation, in 2000, led Nikolopoulos

et al. [132] to suggest that explicit data distribution was unnecessary due to

the low variance in memory latency across NUMA systems: automatic page-

based adaptation to application behavior was deemed sufficient. To under-

stand this situation, it is important to consider the ratio of processor speed

to memory speed. Large-scale shared memory systems are considered those

with hundreds of nodes [80, 90]. Larger systems are sufficiently complex that

they require significantly higher memory latencies, which negatively impacts

the ratio of processing speed to memory access speeds. Larger systems that

behave like sharedmemory systemshavebeen implementedasavirtualmem-

ory layer over a distributed memory system [59, 106], but such implemen-

tations incur particularly large overheads [71] that can be avoided when the

shared address space is implemented directly in hardware. In any case, such

large sharedmemory systems have, fundamentally, two different memory ac-

cess latencies: memory access is either extremely fast, or extremely slow. Be-

cause of the extreme penalty associated with any remote data access, a mes-

sage-passing interface [61] has proven to be a useful way of encouraging pro-

grammers to avoid the communication overhead. As a result, the complexity

of providing a shared-memory interface to systems of more than a few hun-

dred nodes has been largely unnecessary. Thus, Nikolopoulos et al. were cor-

19

rect in their observation primarily becausemachines that do not provide rela-

tively uniform access latencies also tend to avoid providing a shared-memory

environment. Modern and future large-scale shared-memory machines have

higher latency variances, and the effect of these variations has beenmagnified

by processor performance increases [169].

2.3.2 Locality Information

Because threading and locality have been kept separate, interfaces for cap-

turing topology information tend to be operating-system specific. Linux sys-

tems largely rely on the libnuma [96] library to provide locality information

and exploit system topology. This library presents the system as a linear set

of numbered nodes, CPUs, and “physical” CPUs, which overlap arbitrarily.

Threads canbind themselves to any combination of nodes, CPUs andphysical

CPUs. The relationships between nodes are described by a unitless distance

metric presenting latency of remote memory as relative to the latency of local

memory. The latency of a node’s own memory is normalized to a value of 10,

and remote access latencies are expressed on that relativistic scale. Thus, if

local-memory latencies are not uniform across a system, these distances can-

not be directly compared even between processors. Without libnuma, Linux

processes can define their CPU affinity using the sched_setaffinity() inter-

face. Unfortunately, this interface changes across kernel versions. Software

thatmustwork reliably acrossmultiple Linux systemshas todetect the specific

variety of the interface that is provided. The Portable Linux Processor Affin-

ity (PLPA) library [171] provides a stable interface for setting processor affin-

ity on Linux, but does not provide a means of quantifying distances between

20

processors. Solaris systems provide the liblgrp library [167], which provides a

hierarchical description of the machine’s structure. Each locality group (lgrp)

is associated with a specific block of memory and can contain a set of CPUs

and/or additional locality groups. Recent versions of the library provide away

ofmeasuring the latency between locality groups inmachine-specific unspec-

ified units. All of these interfaces enable the establishment of heavyweight

thread CPU affinity and the libnuma and liblgrp interfaces enable location-

specific memory allocation. Because these interfaces manipulate the oper-

ating system’s scheduler and memory subsystem, they can only affect things

that the operating system schedules itself, which are inherently heavyweight

threads.

2.3.3 Data Structures

Likely due to the difficulty in establishing portable, reliable memory affin-

ity, most existing concurrent shared-memory data structures ignore locality

concerns. The concurrent vectors, hashes, and queues provided by Intel’s

Threading Building Blocks [84] interface are good examples of modern data

structuresdesigned forparallel operation in shared-memorycomputers. They

are designed around thread-safe concurrent management operations rather

than concurrent data manipulation operations, and thus ignore data locality.

Unlike many other data structures, arrays have been the subject of some

research that considers locality. For example, Co-array Fortran [134] provides

an intelligent location-aware parallel container— the co-array— that neatly

integrates locality with the executionmodel, albeit using loader-defined static

distribution and a customized language. In this work, arrays are distributed at

21

runtime, similar to Global Arrays [129, 130]. Global Arrays, with their put/get

semantics, rely on the Aggregate Remote Copy Interface (ARMCI) [128, 131] as

a primary communication layer and as such require amessage-passing library

suchasMPI for distributingdata. This givesGlobalArraysportability to cluster

computers, at the expense of copying data multiple times to encapsulate for

communication. The distributed array mechanism presented in Chapter 5,

like all of the work in this thesis, is designed for a shared memory system and

thus exploits the communication efficiencies of such environments.

Research into queue-like data structures generally focuses either on paral-

lel efficiency or single-producer single-consumer speed. A distributed queue

is a special case of a concurrent pool [113], which is designed for parallel ef-

ficiency. The distributed queue presented in Chapter 5 combines the designs

of the “stochastic distributed queue” by Johnson [91] and the push-based dis-

tributedqueuebyArpaci-Dusseau et al. [11]with locality-baseddecisionmak-

ing. Internally, it usesmultiple lock-freequeuesbasedon thedesignbyMichael

and Scott [117], because of its high single-producer single-consumer speed.

2.4 Application Behavior

Estimating the impact of new data structures on high-performance soft-

ware is extremely difficult because such software is typically tightly integrated

with the data structures that it uses, whether they be adaptive blocks [165],

sparse matrices [144], distributed arrays [130, 134], or something else. This

difficulty is widely recognized as a considerable challenge when developing

representative benchmarks. For example, the Mantevo project [76] attempts

to model high performance computing applications by developing mini ap-

22

plications that use data structures similar to those used in high performance

software in a way that mimics the way those structures are used in that soft-

ware.

High performance software for large-scale systems is sometimes written

around a computational abstraction rather than a data structure. A computa-

tional abstraction can be thought of as a computation “template” that defines

the structure of the computation, andwith that, the communication patterns.

The simplest example of such an abstraction is the “bag-of-tasks” abstraction,

where a list of unordered and independent computational goals are defined

and executed. This computational template has been successful in a variety

of situations, including Linda [4], Condor [109], and Seti@Home [166]. Bulk-

Synchronous-Parallel (BSP) is a similar abstraction, designed to allow some

dependence and communication between tasks. Even well-understood ba-

sic computational tasks, such as sorting, can be considered to be a computa-

tional abstraction [49], depending on the situation. Another popular example

of a computational abstraction is Map-Reduce [43]. Map-Reduce is far more

structured than the BSP or sort abstractions, and has proven particularly effi-

cient for specific categories of problems and data sets. Map-Reduce applies a

function to every item in the input set, producing an ordered list of key-value

pairs. These pairs are grouped by their keys, and a reduction function is ap-

plied to each key and its associated list of values to produce a single set of

output values. This abstraction has, like the “bag-of-tasks”, proven useful in

a variety of situations, most significantly in computing the Google pagerank

index of the World Wide Web [25].

23

This thesis examines two abstractions in particular: All-Pairs and Wave-

front. All-Pairs [120] computes the Cartesian product of two sets of data, ap-

plying a function to each pair of elements from both sets and storing the re-

sult in a lookup table of some type. This abstraction has proven useful in, for

example, bioinformatics and data mining applications. The Wavefront [184]

abstraction defines a recurrence relation in two dimensions. It establishes

a virtual output matrix where each element in the output is a function of its

neighbors in the preceding row and column and the input is the first row and

column of the matrix. This is useful in a variety of simulations problems in

economics and game theory, as well as the dynamic programming sequence

alignment problem in genomics.

Computational abstractions and their intrinsic workflows and computa-

tional patterns are not applicable to all situations, and are clearly less expres-

sive than even general purpose workflow languages such as DAGMan [175],

Dryad [85], Pegasus [44], and Swift [186]. But specialization provides a clear

computational structure that canbeanalyzedandoptimized forwhateverhard-

ware architecture and topology is available.

24

CHAPTER 3

QTHREADS: COMBINING LOCALITY AND LIGHTWEIGHT THREADING

3.1 Introduction

The previous chapter reviewed a wide variety of threading models. Large-

scalemultithreading, especially at teraflop-scale andbeyond, has requirements

that are somewhat unusual and do not match the features of existing thread-

ing interfaces. This leads to the obvious question: what should a threading

interface for a teraflop-scale multithreaded system look like? A teraflop-scale

multithreading interfacewill, undoubtedly, provide lightweight threads, light-

weight hardware-assisted synchronization, and integrated machine topology

information.

A teraflop-scale lightweight threading interface needs to:

• support millions of threads,

• handle machine topology,

• be portable across systems,

• be usable on small systems,

• and support lightweight synchronization.

25

This chapterpresents theqthreadapplicationprogramming interface (API),

designed to provide the features necessary for teraflop-scale multithreading.

It provide fast access to hardware-accelerated threading and synchronization

primitives when available, and emulates them when they are not available.

The interface is used toparallelize an example benchmark,HPCCG, and scales

well. It is also used to port a specialized high-performance parallel code from

the Cray ThreadStorm architecture to commodity systems.

3.2 Background

Severalmultithreading trends benefit from lightweight threads: large scale

threading, latency toleration, and the idea of threadmigration. Managingmil-

lions of threads and the resources required for them is, in itself, a significant

problem. Teraflop-scale multithreading requires massive amounts of paral-

lelism—both hardware and software. At that scale, per-thread overhead be-

comes a critical issue that makes only lightweight threading models feasible.

Multithreading is also often used as a means of tolerating memory latency,

which means that multiple threads must be held in processor memory at the

same time so that the processor can switch between them quickly. Each ad-

ditional byte of context required per thread increases the on-chip storage re-

quirements formaintainingmultiple hardware threads. The concept of thread

migration [40, 88, 122] is an idea gaining traction as a means of exploiting

memory topology. However it is only a useful option if migrating a thread is

less expensive than the remote accesses that are avoided. Thus, lightweight

threads increase the viability of thread migration.

26

Recenthardwarearchitectural researchhas investigated lightweight thread-

ingandprogrammer-defined large scale shared-memoryparallelism. The light-

weight threadingconcept allowsexposureof greaterpotential parallelismthan

heavyweight threadingormessage-passing interfaces, increasingperformance

by exploiting any additional available fine-grained hardware parallelism. For

example, the SunNiagara [100] andNiagara 2 [92] processors provide support

for four and eight concurrent threads per core, respectively, with up to eight

cores per processor. Niagara 2 systems support up to four processors, for a to-

tal of 256concurrent threadsper system. Asa larger example, theCrayXMT[39],

with the ThreadStormCPUarchitecture, avoidsmemory dependency stalls by

switching between 128 concurrent threads per processor. XMT systems sup-

port over 8,000 processors at a time. Thus, to maximize throughput, the pro-

grammer must provide at least 128 threads per processor, or over 1,024,000

threads in a full-size system.

Lightweight threading requires a lightweight synchronizationmodel [180].

Thereare several options, includingADA-likeprotected records [110] and fork-

sync [16]—both of which lack a clear hardware analog—as well as transac-

tional memory and full/empty bits. Transactional memory is a synchroniza-

tion model that started in hardware, as the Load-Linked/Store-Conditional

feature of many RISC processors, and became a popular implementation de-

sign in databases. It has been implemented in both hardware [30] and soft-

ware [35, 46, 154], but despite a great deal of academic interest [8, 26, 42, 119],

has historically proven to incur too much overhead and has too many unre-

solved semantics issues to be practical for fine-grained general purpose com-

puting [22]. The model used by the Cray MTA/MTA-2/XMT and PIM designs,

27

pioneered by the Denelcor HEP [51], is full/empty bits (FEBs). This technique

marks each word in memory with a “full” or “empty” state. Threads may wait

for either state, and atomic operations on a given memory word’s contents

also atomically affect its status. This technique can be implemented directly

in hardware, as it is in the Cray systems.

Large parallel systems provide inherently non-uniformmemory access la-

tencies. As the size of parallel systems has grown, the non-uniformity of their

memory latencies has increased. This trend is likely to continue. Standard

threading interfaces—such as pthreads [83], OpenMP [137], and Intel Thread-

ing Building Blocks [84]—are designed for basic symmetric multiprocessing

(SMP) andmulticore systems. They provide powerful and convenient tools for

developing software tailored to such systems. While these interfaces make it

easy to create parallel tasks, they incorrectly assume that all data is equally ac-

cessible from all threads and so do not maintain data and thread locality nor

provide tools to discover and exploit system topology. Some operating sys-

tems attempt to address these shortcomings by providing mechanisms both

to discovermachine topology and to specify theCPUaffinity of threads and al-

located memory blocks. However, using these mechanisms directly requires

using system-specific libraries with non-portable interfaces that only affect

heavyweight threads. Lightweight threading models, such as OpenMP, often

use locality-ignorantwork-stealing scheduling techniques that exacerbate the

problem. In order to properly define and schedule threads, both the applica-

tion and the thread scheduler must be aware of the topology of the system re-

sources in use, and thus unifying threading and locality interfaces is a logical

development.

28

Large scale multithreaded systems each use different topologies and syn-

chronization mechanisms. If they support lightweight threading, the thread-

ing interface is typically system-specific as well. Not only does this situation

make comparisons between large systems difficult, it also complicates single-

system software development. Because lightweight threading primitives are

typically either platform-dependent or compiler-dependent, developingmul-

tithreaded software for large scale systems often requires direct access to the

large system in question. Direct access is not always convenient because of

expense, access restrictions, or contention for machine time. Thus, the best

threading interface is one that provides the same features and interface on

both large and small systems.

This chapter introduces the qthread lightweight threading API and its Unix

library-based implementation. While library-based multithreading imposes

some semantic issues when optimizing code [17], it is a convenient method

for developing and discussing a fundamental and portable threading inter-

face. Such an interface can be used as a programming target by compilers to

implementmultithreaded applications, thereby avoiding the semantic issues.

TheAPI is designed tobea lightweight threading interface thatmapswell to fu-

ture large scalemultithreaded architectureswhile still providing performance,

portability, and utility on commodity systems. The Unix implementation is a

proof of concept that provides a basis for developing applications for future

architectures.

29

3.3 Qthreads

This chapter presents the qthread lightweight threading API, which pro-

vides several key features:

• Large scale lightweight multithreading support

• Inherent thread locality

• Basic thread-resource management

• Access to or emulation of lightweight synchronization mechanisms

• Source-level compatibility between platforms

• Threaded loop operations

• Distributed data structures and computational abstractions

The qthread API, the basic aspects of which are summarized in Figure 3.1,

was designed to maximize portability to experimental architectures support-

ing lightweight threads and unusual synchronization primitives while provid-

ing a stable interface to the programmer for using these lightweight threads.

TheqthreadAPI integrates locality controlwith the threading interface and in-

cludes distributed data structures and computational abstractions that make

use of that integrated control.

In addition to portability, performance is important to the design of the

qthreads API. The goal is to add as little overhead as possible to experimental

architectural threading primitives while maintaining a generic interface. The

30

Threads Synchronization Futures

qthread_init(n) Initialize the
library with n locations

qthread_fork(f,arg,ret)
Create a lightweight thread to
execute ret = f(arg)

qthread_fork_to(f,a,r,shep)
Create a lightweight thread to
execute r = f(a) on shep

qthread_self() Retrieve a
thread’s self-reference

qthread_id(self) Retrieve a
thread’s unique identifier

qthread_shep(self) Discover
which shepherd a thread is
assigned

qthread_stackleft(self)
Discover the remaining stack
space

qthread_retloc(self)
Discover the location the return
value will be stored, if any

qthread_finalize() Clean up
threads and free library memory

qthread_lock(self,addr)
Block until the address addr is
locked

qthread_unlock(self,addr)
Unlock the address addr

qthread_readFF(self,dst,src)
Block until src is full, copy a
machine word from src to dst

qthread_readFE(self,dst,src)
Block until src is full, copy a
machine word from src to dst,
mark src empty

qthread_writeF(self,dst,src)
Copy a machine word from src
to dst, mark dst full

qthread_writeEF(self,dst,src)
Block until dst is empty, copy a
machine word from src to dst,
mark dst full

qthread_incr(addr,incr)
Atomically add incr to the
integer value in addr

qthread_dincr(addr,incr)
Atomically add incr to the
floating point value in addr

qthread_cas(addr,oldv,newv)
Atomically swap newv into addr
if addr contains oldv

future_init(n) Specify that
each location may have only n
futures

future_fork(f,arg,ret) Block
until a future is created to
execute ret = f(arg)

future_fork_to(f,a,r,shep)
Block until a future is created to
execute r = f(a) on shep

future_yield(self) Stop
counting this thread as a future

future_acquire(self) Block
until this thread can be counted
as a future

Figure 3.1. The Qthread API

qthread API consists of four components: the core lightweight thread com-

mand set, an interface for basic threaded loops, a set of distributed data struc-

tures that use the built-in locality information, and a set of computational ab-

stractions. The data structures are discussed in Chapter 5, and the computa-

tional abstractions are discussed in Chapter 6.

3.3.1 Semantics

More than simply a threading implementation, though, a qthread is a light-

weight threading concept intended to match future hardware threading envi-

ronments and features more closely than existing threading concepts. How-

31

ever, given the large body of existing programs with pthreads, qthreads are

intended to be similar. A lightweight thread, or “qthread,” as defined here,

is a nearly-anonymous thread with a small (e.g. one page) stack that exe-

cutes in aparticular location. These three crucial aspects—anonymity, limited

resources, and inherent localization—represent significant and fundamental

changes in the way explicit threads function.

The anonymity of these threads means that they cannot be controlled by

other threads other than through explicit synchronization operations. For ex-

ample, an existing thread cannot be canceled by another thread. However, the

threads are only nearly anonymous because they can be uniquely identified in

at least twoways. First, each thread, when run, is given a pointer to an opaque

data structure representing itself for speed when doing introspection. Sec-

ondly, each thread can have a return value location, which can be used to wait

for that thread to exit. When the thread is created, this return value location

is emptied with the builtin FEB locking mechanism. Then, when the thread

exits, the location is written to and marked as full. This form of anonymity is

similar to “detached” pthreads in that every thread can clean up all of its re-

sources immediately after it exits, but doesn’t assume hardware that handles

thread-specific signals.

It is assumed that threads operate in computers of finite size and with lim-

ited resources. In systems with finite size that use large numbers of threads,

threads must deal with having limited resources. For example, in a 32-bit en-

vironment with one million threads, if each thread receives non-overlapping

thread-specific state theneach threadcanhaveatmost four kilobytesof thread-

specific state, which would leave no remaining address space for any other

32

data. In recognition of this, and to deal with the architecture-defined vari-

ability in stack storage, a qthread’s thread-specific storage (i.e. stack) is both

explicitly limited and can be introspected programmatically.

Other threading systems are also naturally limited, but the limits are less

obvious. For example, by default, pthread threads typically have relatively

large eight megabyte stacks allocated for them, which can be resized dynam-

ically as necessary. Such dynamic resizing requires that thread stacks be al-

located with logical space between them. Stack overruns in pthread systems

are detected and handled by creating page fault signal handlers and by mark-

ing the next page of memory after the end of the stack as unreadable. Thus,

no matter the stack size, each thread’s stack must be logically separated from

other thread stacks by at least a page to support overrun detection, with ad-

ditional space to allow for resizing. This overhead is implicit in the pthread

model, rather than explicit. The pthread interface allows for thread stack sizes

to be specified, allowing the programmer to limit the impact of a given thread,

but thepthread interfaceprovidesno introspectiveability todiscover theamount

of stack space used, thus relegating pthread stack size limits to the “guess-

and-check” category of feature where guessing incorrectly leads to either un-

expected crashes or memory corruption.

That each thread is inherently localized—that is, executes in a specific lo-

cation—is quite the opposite of the fundamental assumptions of most other

threading models. For example, pthread threads make no guarantees about a

thread’s location. There are system-specific tools, such as libnumaand liblgrp,

that allow thread locations to be specified after the threads have been created,

but that is an inefficient model, at best. Thread-specific data is, in such mod-

33

els, allocated somewhere in the systemwhen threads are created. Then, when

a location is specified, it must be moved to the thread’s new location. Addi-

tionally, the system-specific nature of such locality interfaces inhibits porting

location-aware applications between systems.

There is a psychological aspect to the localization characteristics of the in-

terface as well. By integrating locality with the threading interface, the pro-

grammer is afforded control over memory locality in a way that makes the

balkanization of ccNUMA systems explicit, thereby allowing it to be part of

the design process. In any parallel system of sufficient size, there are dis-

tributed resources and therefore there is communication between those re-

sources. The communication is usually the single most expensive action the

applications take, particularly in large systems. One of the things that has

madeMPI successful is that it provides a framework that forces programmers

to consider communication as somethingof an inconvenience,which encour-

ages them to keep it to a minimum. Good logical separation between paral-

lel threads is achieved by encouraging a helpful thought process. In multi-

threaded applications, as opposed to MPI, communication is implicit rather

than explicit. Without explicit and unavoidable locality, communication is

difficult to think about and can easily happen unintentionally. By making

location an obvious, reliable, and unavoidable aspect of every qthread, the

qthread concept turns locality into something that is convenient to reason

with and take advantage of.

34

3.3.2 Basic Thread Control and Locality

Qthreads lackmost of the expensive guarantees and features of their larger

process-like cousins, such as per-thread process identifiers (PIDs), signal vec-

tors, and the ability to remotely cancel threads. This lightweight nature sup-

ports very largenumbersof threadswith fast context-switchingbetween them,

enablinghigh-performancefine-grained thread-levelparallelism. TheAPIalso

provides an alternate form of thread, called a “future”, which is created only

as resources are available.

Qthreads and futures, once created, cannot be directly controlled by other

threads. However, they can provide FEB-protected return values so that a

thread can efficiently wait for another to complete. Among other benefits,

this allows qthreads to release their resources when they exit even if no other

thread is waiting for them. FEBs do not require polling, which is discouraged

as the library does not guarantee preemptive scheduling.

The scheduler in the qthread library uses a cooperative-multitasking ap-

proach, though on architectureswith hardware support for lightweight thread

scheduling, theymay be preemptively scheduled. When a thread blocks, such

as from a lock or FEB operation, a context switch is triggered. Because these

context switches are done in user space via function calls and therefore do not

require signals or saving a full set of registers, they are less expensive than op-

erating system or signal-based context switches. This scheduling technique

allows threads to take full advantage of the processor until data is needed that

is not yet available, and allows the scheduler to hide communication laten-

cies by keeping the processor busy with useful work. Logically, this only hides

communication latencies that take longer than a context-switch.

35

Only two functions are required for creating threads:

qthread_init(shep), which initializes the library with shep shepherds;

and qthread_fork(func,arg,ret), which creates a thread to perform the

equivalent of *ret = func(arg). To destroy all threads and release all library-

specific memory, use qthread_finalize().

Qthreads are always associated with—and scheduled in the bailiwick of—

a thread mobility domain, or “shepherd,” which is assigned when the thread

is created. These shepherds are grouping constructs that define immovable

regions within the system. Shepherds establish a location within the system,

and may correspond to nodes in the system, memory regions, or protection

domains. The number of shepherds is defined when the library is initialized.

In the Unix implementation, a shepherd is managed by at least one pthread

which executes qthreads. It is worth noting that this hierarchical thread struc-

ture, particular to the Unix implementation (not inherent to the API), is not

new but rather useful for mapping threads to mobility domains. Hierarchical

threads have also been used by the Cray X-MP [168], as well as Cilk [16] and

other threading models.

Figure 3.2 illustrates several ways of mapping shepherds to a dual-proces-

sor dual-core machine, and displays the relationship between qthreads and

shepherds. Using only two shepherds on this system, as in Figure 3.2(b), es-

tablishes one shepherd per cache: each qthread will always execute using the

same cache. Using four shepherds, as in Figure 3.2(c), maps each shepherd to

a core, ensuring that each qthread will always execute on the same core. Fig-

ure 3.2(a) illustrates the use of only a single shepherd, thereby providing no

guarantee as to where in the system each qthread will execute. In each figure,

36

Q
th

re
a
d

Q
th

re
a
d

Q
th

re
a
d

Q
th

re
a
d

Q
th

re
a
d

Q
th

re
a
d

Cache

Core Core

Q
th

re
a
d

Q
th

re
a
d

Q
th

re
a
d

Q
th

re
a
d

Q
th

re
a
d

Q
th

re
a
d

Cache

Core Core

CPU CPU

Shepherd 0

(a) One

Q
th

re
a
d

Q
th

re
a
d

Q
th

re
a
d

Q
th

re
a
d

Q
th

re
a
d

Cache

Core Core

Q
th

re
a
d

Q
th

re
a
d

Q
th

re
a
d

Q
th

re
a
d

Q
th

re
a
d

Q
th

re
a
d

Cache

Core Core

CPU CPU

Shepherd 0 Shepherd 1

Q
th

re
a
d

(b) Two

Q
th

re
a
d

Q
th

re
a
d

Q
th

re
a
d

Q
th

re
a
d

Cache

Core Core

Q
th

re
a
d

Q
th

re
a
d

Q
th

re
a
d

Q
th

re
a
d

Q
th

re
a
d

Q
th

re
a
d

Cache

Core Core

CPUCPU

Shep0 Shep1 Shep2 Shep3

Q
th

re
a
d

Q
th

re
a
d

(c) Four

Figure 3.2. The Shepherd/Qthread Relationship

each qthread of a given color can only execute on the shepherd—and thus on

the hardware—of the same color.

Qthreads can be spawned directly to a specific shepherd, if desired, via

the qthread_fork_to(func,arg,ret,shep) function. Qthreads can look up in-

formation about themselves; for example qthread_retloc() returns the ad-

dress of the return value of the thread, and qthread_stackleft() provides

an approximate estimate of the bytes remaining in the thread’s stack. The

currently assigned shepherd can be queried with qthread_shep(). Once as-

signed a shepherd, qthreads can move between shepherds by calling the

qthread_migrate_to(shep) function. This movement is always explicit rather

than implicit, thereby providing a scheduling guarantee that other thread-

ing interfaces do not: a thread cannot execute in an unexpected location.

This guarantee allows the programmer greater control over the placement of

threads and communication betweenmachine locations. Such control previ-

ously required the use of platform-specific libraries. The distance between

shepherds may be determined using the qthread_distance(src,dest) func-

tion. For convenience when making decisions about locality, migration, and

37

memory distribution, a list of shepherds sorted by distance from the caller can

be efficiently obtained via the qthread_sorted_sheps() function.

Though the API has no built-in limits on the number of threads, thread

creation may fail or need to be restricted due to memory exhaustion or other

system-specific limits. Even lightweight threads consume resources to ex-

ist, such as the cost of storing their processor context. While the program-

mer certainly could track these resources and integrate restrictions on thread-

ing into the design of an application, it can be useful to restrict the cre-

ation of threads—and thus their resource consumption—without reimple-

menting a resource tracking mechanism for each application. “Futures” pro-

vide a generic way to restrict thread creation. Futures are qthreads that are

limited to a programmer-defined per-shepherd maximum. Futures are cre-

ated with future_fork(func,arg,ret), which has semantics similar to those

of qthread_fork(). The programmer can impose a per-shepherd limit of n fu-

tureswith the function future_init(n). Thereafter, calls to future_fork() that

would result inmore than n futures existing on any given shepherd will block.

When one of the existing futures exits, resulting in fewer than n futures exist-

ing, one of the blocked future_fork() operations will unblock and succeed.

3.3.3 Synchronization

Access to hardware features, such as atomic operations, is critical for opti-

mizing performance on any given computer. Virtually all computer architec-

tures provide atomic hardware primitives, such as an increment or a compare-

and-swap. However, atomic operations are not a standard part of most pro-

gramming interfaces. Even basic operations that are frequently atomic, such

38

as single-word reads or writes, have different memory semantics on different

systems.

The complexity of portable atomic operations is easy to demonstrate. For

example, a hardware-accelerated atomic increment on a Xeon processor is

a hardware primitive, and using it is fairly straightforward. The Xeon uses

the AMD64 ISA, which simply requires an xadd instruction with the lock pre-

fix, along with sufficient compiler directives to prevent the value of the given

memory address from being cached across the increment. The Niagara 2 pro-

cessor, using the SparcV9 ISA, provides only an atomic compare-and-swap

hardware primitive. Thus, atomic increments on a Niagara 2 must be per-

formed in a loop using the cas instruction with a membar to assure memory

dependencies are respected. Doing the same atomic increment on an Ita-

nium processor, which uses the IA64 architecture, requires both approaches.

Inmany cases, a fetchadd instruction can be used, similar to AMD64’s locked

xadd. However, the fetchadd instruction can only work with a limited set of

increment values. For arbitrary increment values, the incrementmust bedone

using a compare-and-swap loop: atomically read the current value, perform

the addition, copy the old value into the comparison criterion application reg-

ister (ar.ccv), and then use a compare-and-swap instruction (cmpxchg) to ei-

ther place the incremented value into the input address or restart the loop.

The PowerPC architecture provides transaction-like load-locked/store-condi-

tional instructions. Thus, an atomic increment on a PowerPC must also be

performed in a loop. The value to be incrementedmust first be loaded and its

address reserved with the lwarx instruction. Then the value is incremented

and the new value stored back to the original address with the conditional

39

stwcx. store instruction, which will fail if the reservation no longer exists. If

the store fails, the loop must be restarted. If the store succeeds, an isync in-

struction must be issued to enforce memory dependencies. Of course, these

operations change subtlydependingon thebitwidthof the incrementedvalue.

The qthread library provides cross-platform access to atomic increments

using a simple qthread_incr(addr,val) inline function call. A similar nest

of complex assembly instructions is necessary to provide an atomic com-

pare-and-swapoperationacrossmultipleplatforms,which theqthread library

provides via the qthread_cas(addr,old,new) inline function call. It is often

convenient in scientific computing to have atomic floating-point increments

as well, and the qthread library provides both qthread_fincr(addr,val) and

qthread_dincr(addr,val) to increment floating point values atomically.

These non-blocking atomic operations complement the blocking syn-

chronization methods that the qthread library provides: basic mutex-like

locking and full/empty bit (FEB) operations. The mutex operations are

qthread_lock(addr) and qthread_unlock(addr). The FEB semantics, which

allow memory reads and writes to block based on a per-word full or empty

status, are more complex. They include functions to manipulate the FEB

state in a non-blocking way (qthread_empty(addr) and qthread_fill(addr)),

as well as blocking reads and writes. The blocking read functions wait for

a given address to be full and then copy the contents of that address else-

where. One (qthread_readFF()) will leave the address marked full, the other

(qthread_readFE()) will thenmark the address empty. There are also twowrite

actions. Both will fill the address being written, but one (qthread_writeEF())

will wait for the address to be empty first, while the other (qthread_writeF())

40

won’t. Using both mutex and FEB operations on the same addresses at the

same time produces undefined behavior, as they may be implemented using

the same underlying mechanism.

Because blocking synchronization affects thread scheduling and can trig-

ger context switches, it is inherently more complex than atomic operations,

but provides a powerful way to express dependencies between threads. While

some systems, such as Cray MTA and XMT systems, provide hardware FEB

support, onmost architectures the qthread librarymust emulate them. Using

blocking synchronization methods external to the qthread library is discour-

aged, as they would prevent the library frommaking scheduling decisions.

3.3.4 Threaded Loops and Utility Functions

TheqthreadAPI includes several threaded loop interfaces, built on the core

threading components. Both C++-based templated loops and C-based loops

are provided. Several utility functions are also included as examples. These

utility functions are relatively simple, suchas summingall numbers in anarray

or finding the maximum value of that array.

There are two basic parallel loop behaviors: one spawns a separate thread

for each iteration of the loop, and the other uses an equal distribution tech-

nique that spawns a single thread for each shepherd and distributes the it-

eration space over those threads. Functions that provide one thread per it-

eration are qt_loop() and qt_loop_future(), using either qthreads or futures,

respectively. Functions that use equal distribution are qt_loop_balance() and

qt_loop_balance_future(). A variant of these, qt_loopaccum_balance(), allows

41

unsigned int i;
for (i = start; i < stop; i += stride) {

func(NULL, argptr);
}

(a) C Loop

qt_loop(start, stop, stride, func, argptr);

(b) Threaded Equivalent

Figure 3.3. qt_loop() and C Equivalent

void func(qthread_t *me, const size_t startat, const size_t stopat,
void *arg)

{
for (size_t i = startat; i < stopat; i++)

/* do work */
}

Figure 3.4. qt_loop_balance()User Function Example

iterations to return a value that is collected, or “accumulated”, via a user-de-

fined accumulation function.

The qt_loop() and qt_loop_future() functions take arguments start, stop,

stride, func, and argptr. The functions provide a threaded version of the loop

in Figure 3.3(a).

The qt_loop_balance() functions, since they distribute the iteration space,

require a function that takes its iteration space as an argument. Thus, while

similar to qt_loop(), they expect that the func argument points to a function

structured like the one in Figure 3.4.

42

unsigned int i;
void *tmp = malloc(size);
for (i = start; i < stop; i++) {

func(NULL, i, i+1, argptr, tmp);
accumulate(retval, tmp);

}
free(tmp);

(a) C Loop

qt_loopaccum_balance(start, stop, size,
retval, func, argptr,
accumulate);

(b) Threaded Equivalent

Figure 3.5. qt_loopaccum_balance() and C Equivalent

The qt_loopaccum_balance() functions use an accumulation function to

gather return values. The function provides a threaded loop construct sim-

ilar to the loop in Figure 3.5(a). The func() function in this loop is similar to

the one in Figure 3.4.

Like the qt_loop_balance() function, theaccumulator variantuses theequal

distribution parallel loop technique. Thus, the func() function used is ex-

pected to be similar in structure to the one in Figure 3.4, but with one sig-

nificant difference: the functionmust store its return value in thememory ad-

dressed by tmp, which is then passed to the user-provided accumulate() func-

tion to gather and store in retval.

TheqthreadAPI alsoprovides utility functions for performing simple tasks.

For example, the qt_double_min(), qt_double_max(), qt_double_prod(), and

qt_double_sum() functions find the minimum, maximum, product and sum,

respectively, of all entries in an array of double-precision numbers using

43

the qt_loop() structure. A similar family of functions, qutil_double_min(),

qutil_double_max(), qutil_double_prod(), and qutil_double_sum(), perform

the same tasks using a lagging-loop structure. Similar functions are provided

for signed and unsigned integers.

Assuming that each shepherd maps to a single execution context, the bal-

anced loop design allows the computational power of a parallel system to be

maximized with a minimum amount of overhead, but presumes that the it-

erations do not interact or depend on each other in any way, and does not

compensate for additional threads that may also be executing.

A lagging-loop design spawns threads for fixed-size segments of the itera-

tion space. The number of threads active at any given time is thus either lim-

ited only by the problem size, or limited by the user-defined restriction on the

number of active futures. This technique cooperateswith unrelated executing

threads, and handles interaction between threads better than the equal distri-

bution technique because more than one thread is typically assigned to each

shepherd. Thus, if one thread blocks, other threads can execute. Of course,

additional threadsmeansmore threadmanagement overhead andmore con-

text swapping. This loop design also requires a well-chosen segment size, to

minimize thread overhead without reducing the parallelism to a point where

it cannot cooperate with other unrelated threads sufficiently.

3.4 Performance

The design of the qthread API is based around two primary goals: effi-

ciency inhandling largenumbersof threads andportability to large-scalemul-

tithreaded architectures. The implementation discussed in this section is the

44

Unix implementation, which is for POSIX-compatible Unix-like systems run-

ningon traditionalCPUs that donothavehardware support for full/emptybits

or lightweight threading, such as PowerPC, SparcV9, IA32, IA64, and AMD64

architectures.

3.4.1 Implementation Details

TheUnix implementation of the qthread library uses a hierarchical thread-

ing architecture with pthread-based shepherds to allow multiple threads to

run in parallel. Lightweight threads are created in user space as a proces-

sor context and a small (one page) stack. These lightweight threads are ex-

ecuted by the pthreads. Context-switching between qthreads is performed at

synchronization boundaries rather than on an interrupt basis, to reduce the

amount of work and state necessary to swap threads. For performance, mem-

ory is pooled in shepherd-specific structures, allowing shepherds to operate

independently. Much of the qthread library is implemented with lock-free al-

gorithms, including runnable thread queueing, memory pools, and threaded

loop tracking.

On systems without hardware FEB support, FEB operations are emulated

via a central striped hash table. This table is a bottleneck that would not exist

ona systemwithhardware lightweight synchronization support. However, the

FEB semantics still allow applications to exploit asynchrony even when using

a centralized implementation of those semantics.

45

3.4.2 Micro-benchmarks

Todemonstrateqthread’s advantages, sixmicro-benchmarksweredesigned

and tested using both pthreads and qthreads. The algorithms in both imple-

mentations are identical, with the exception that one uses qthreads as the ba-

sic unit of threading and the other uses pthreads. The benchmarks are as fol-

lows:

1. Ten threads atomically increment a shared counter one million times

each

2. 1,000 threads lock and unlock a shared mutex ten thousand times each

3. Ten threads lock and unlock 1 million mutexes

4. Ten threads spinlock and unlock ten mutexes 100 times

5. Create and execute 1 million threads in blocks of 200 with at most 400

concurrently executing threads

6. Create and execute 1 million concurrent threads

Figure 3.6 illustrates the difference between using qthreads and pthreads

on a 1.3GHz dual-processor PowerPC G5 with 2GB of RAM. Figure 3.7 illus-

trates the sameona48-CPU1.5GHz ItaniumAltixwith 64GBofRAM.Both sys-

tems used the Native POSIX Thread Library [50] implementation of Pthreads

onLinux. Thebars in each chart in Figure 3.6 are, from left to right, thepthread

implementation, the qthread implementation with a single shepherd, with

two shepherds, and with four shepherds. The bars in each chart in Figure 3.7

are, from left to right, the pthread implementation, the qthread implementa-

tion with a single shepherd, with 16 shepherds, with 48 shepherds, and with

46

Ex
ec

ut
io

n
Ti

m
e

0
5

10
15
20
25
30
35
40

P

Q1
Q2 Q4

(a) Increment

Ex
ec

ut
io

n
Ti

m
e

0
20
40
60
80

100
120

P
Q1

Q2 Q4

(b) Lock/Unlock

Ex
ec

ut
io

n
Ti

m
e

0
5

10
15
20
25
30

P

Q1

Q2 Q4

(c) Mutex Chaining

Ex
ec

ut
io

n
Ti

m
e

0
50

100
150
200
250
300
350 P

Q1 Q2 Q4

(d) Spinlock Chaining

Ex
ec

ut
io

n
Ti

m
e

0
5

10
15
20
25
30
35
40
45 P

Q1
Q2 Q4

(e) Thread Creation

Ex
ec

ut
io

n
Ti

m
e

0
20
40
60
80

100
120
140
160
180 Q1

Q2 Q4

(f) Concurrent Threads

Figure 3.6. Microbenchmarks on a dual PPC

128 shepherds. The way to view these graphs is as a contrast between emu-

lated operations (b, c, and e) and hardware assisted operations (a, d, and f).

Emulationofhardware features is quite expensive. For example, theqthread

locking implementation is built with pthreadmutexes, and thus cannot com-

petewith rawpthreadmutexes for speed, as illustrated inFigures 3.6(b), 3.7(b),

3.6(c), and 3.7(c). This is a detail that would likely not be true on a system

that had hardware support for FEBs, and could be improved with a more dis-

tributed or efficient data structure, such as a lock-free hash table. Despite the

mutex overhead, because of the qthread library’s simple scheduler, it is able to

outperformpthreadswhenusing spinlocks and a lownumber of shepherds, as

illustrated in Figure 3.6(d). However, the scheduler cannot overcome the costs

of mutexes and contention with larger numbers of shepherds (Figure 3.7(d)).

47

Ex
ec

ut
io

n
Ti

m
e

0
5

10
15
20
25
30
35
40
45
50 P

Q1 Q16 Q48Q128

(a) Increment

Ex
ec

ut
io

n
Ti

m
e

0
50

100
150
200
250

P Q1

Q16
Q48

Q128

(b) Lock/Unlock

Ex
ec

ut
io

n
Ti

m
e

0
5

10
15
20
25

P

Q1

Q16 Q48Q128

(c) Mutex Chaining

Ex
ec

ut
io

n
Ti

m
e

0
0 2
0 4
0 6
0 8

1
1 2

P

Q1

Q16 Q48
Q128

(d) Spinlock Chaining

Ex
ec

ut
io

n
Ti

m
e

0
50

100
150
200
250

P

Q1
Q16 Q48Q128

(e) Thread Creation

Ex
ec

ut
io

n
Ti

m
e

0
20
40
60
80

100

Q1

Q16 Q48
Q128

(f) Concurrent Threads

Figure 3.7. Microbenchmarks on a 48-node Altix

When the qthread library is able to use hardware primitives, it provides

a marked improvement over the pthread alternative. In Figures 3.6(a) and

3.7(a), the pthread implementation is outperformed by the qthread imple-

mentation because the qthread library uses a hardware-assisted atomic in-

crement while pthreads is forced to rely on a mutex. Additional shepherds do

not improve the qthread implementation’s performance because the shared

counter quickly becomes a bottleneck. The contention for the counter, and

thecachecoherencyoverhead that contention triggers, degradesperformance.

While testing themillion threadbenchmark, in Figures 3.6(f) and3.7(f), the

pthread library proved incapable of more than several hundred concurrent

threads—requesting toomany threads deadlocked the operating system. An-

other benchmark was designed to work within pthreads’ limitations by using

48

amaximum of 400 concurrent threads. Threads are spawned in blocks of 200,

and after each block, threads are joined until there are only 200 outstanding

before spawning a new block of 200 threads. In this benchmark, Figures 3.6(e)

and 3.7(e), pthreads performsmuchbetter—on the PowerPC system, it is only

a factor of two more expensive than qthreads.

3.5 High Performance Computing Conjugate Gradient Benchmark

To evaluate the performance potential of the API and the potential ease of

integrating it into existing code, a representative application was modified to

use the qthread library. The High Performance Computing Conjugate Gradi-

ent (HPCCG) benchmark from theMantevo project [76] was parallelized with

the threaded loops component of the qthread library. The HPCCG program

is a C++-based conjugate gradient benchmarking code for a 3-D chimney do-

main, largely based on code in the Trilinos [77] solver package. The code re-

lies primarily upon tight loops where every loop iteration is essentially in-

dependent of every other iteration. With simple modifications to the code

structure, the serial implementation of HPCCG was transformed into multi-

threaded code.

3.5.1 Code Modifications

One of the primary phases of the benchmark is the WAXPBY phase, origi-

nally implemented as the relatively simple tight loop in Figure 3.8.

To parallelize these loops with qthreads requires the definition of a struc-

ture to pass the arguments to the worker threads, and a worker thread func-

tion. A simple structure for passing the arguments is defined in Figure 3.9.

49

int waxpby (const int n, const double alpha, const double * const x,
const double beta, const double * const y, double * const w)

{
if (alpha==1.0)
for (int i=0; i<n; i++) w[i] = x[i] + beta * y[i];

else if (beta==1.0)
for (int i=0; i<n; i++) w[i] = alpha * x[i] + y[i];

else
for (int i=0; i<n; i++) w[i] = alpha * x[i] + beta * y[i];

return(0);
}

Figure 3.8. HPCCG’s WAXPBY Phase

struct four_args {
const double * const y, * const x, beta, alpha;
double * const w;
four_args(const double * const X, const double BETA,

const double ALPHA, const double * const Y,
double * const W) :

x(X), beta(BETA), alpha(ALPHA), y(Y), w(W) {}
};

Figure 3.9. Structure for Passing WAXPBY Arguments

The worker thread function can be defined as in Figure 3.10.

Finally, the original waxpby() function can be modified to use these new

functions in a threaded fashion, as in Figure 3.11.

Keep inmind that this parallelization effort is a relatively naïve one. No ef-

fort at partitioning data or limiting communication between parallel nodes or

avoiding false sharing has beenmade. This experiment is intended to demon-

strate only the effectiveness of applying the qthread library’s threaded loop

constructs to a more complicated tight loop.

50

static void waxpby_worker(qthread_t *me, const size_t startat,
const size_t stopat, void * arg)

{
const struct four_args *a((struct four_args *)arg);
const double alpha(a->alpha), beta(a->beta), *const x(a->x), *const y(a->y);
double *const w(a->w);
if (alpha==1.0)
for (int i=startat; i<stopat; i++) w[i] = x[i] + beta * y[i];

else if (beta==1.0)
for (int i=startat; i<stopat; i++) w[i] = alpha * x[i] + y[i];

else
for (int i=startat; i<stopat; i++) w[i] = alpha * x[i] + beta * y[i];

}

Figure 3.10. Worker Function for Threading WAXPBY

int waxpby (const int n, const double alpha, const double * const x,
const double beta, const double * const y, double * const w)

{
struct four_args args(x,beta,alpha,y,w);
qt_loop_balance(0, n, waxpby_worker, &args);
return(0);

}

Figure 3.11. ThreadedWAXPBY

3.5.2 Results

Figure 3.12 illustrates the benefit of even simple parallelization efforts on a

regular problem like the HPCCG benchmark. In this case, the benchmark was

run on a uniform 75×75×1024 domain—using approximately 4 GB of mem-
ory—on a 48-node SGI Altix SMP. Each data point represents the average ex-

ecution time of 100 benchmark runs using that number of processes or shep-

herds. The SGI MPI results are presented to 48 processes, or one process per

51

Processes/Shepherds
1 2 4 8 16 32 48 64 128

Ex
ec

ut
io

n
Ti

m
e

0

50

100

150

200

Serial qthread MPI

Figure 3.12. HPCCG on a 48-CPU SGI Altix SMP

CPU. AdditionalMPI processes would over-subscribe the processors, which is

a setup that generally underperforms with SGI MPI.

One of the features of the HPCCG benchmark is that it comes with an op-

timized MPI implementation. The MPI implementation, using SGI’s MPI li-

brary, is entirely orthogonal to the qthread implementation and does not use

threads of any kind. The qthread andMPI implementations scale similarly up

to about sixteen nodes. Beyond sixteen nodes however, MPI begins to behave

very badly.

The poor performance of the MPI implementation is caused by

MPI_Allreduce() in one of the main functions of the code. While this

takes just under 18.9% of execution time with eight MPI processes, it takes

84.1% of the execution time with 48 MPI processes. While it is tempting to

52

simply blame the problem on a bad implementation of MPI_Allreduce(), it is

probably more valid to examine the difference between the qthread and MPI

implementations. The qthread implementation performs the same compu-

tation as the MPI_Allreduce(), but rather than require all nodes to come to

the same point before the reduction can be computed and distributed, the

computation is performed as the component data becomes available from

the threads returning, the computational threads can exit, and other threads

scheduled on the shepherds can proceed. The qthread implementation

exposes and exploits the asynchronous nature of the benchmark, while the

MPI implementation does not. This asynchrony is revealed even though

the Unix implementation of the qthread library relies upon centralized

synchronization, and thus would likely provide further improvement on a

real massively parallel architecture.

3.6 Multi-Threaded Graph Library Benchmarks

Cray’s ThreadStorm architecture [38, 39] is of particular interest to light-

weight threading researchers, as it provides lightweight threads, hardware FEB

support, and a toolchain to take advantage of them. The architecture also has

high-performance software available for it. In particular, the Multi-Threaded

GraphLibrary (MTGL) [14]providesagoodexampleofhigh-performancecode

written for an architecture that provides these capabilities.

The MTGL is a graph library designed in the spirit of the Boost Graph Li-

brary (BGL) [156] andParallel BoostGraphLibrary (PBGL) [67]. The libraryuti-

lizes the generic component features of the C++ language to allow flexibility in

graph structures, without changes to the algorithm in use. Unlike the distrib-

53

uted memory, message-passing-based PBGL, the MTGL was designed specif-

ically for the shared-memory multithreaded ThreadStorm architecture. The

MTGL includes a number of common graph algorithms, including breadth-

first search, connected components, and PageRank algorithms.

3.6.1 Qthread Implementation of ThreadStorm Intrinsics

The ThreadStorm architecture has several platform-specific features—in-

cluding FEBs, fast atomic increments, and conditionally created threads—

which the qthread API provides. On a ThreadStorm, these features are ordi-

narily accessed through the use of C-language pragmas that instruct the cus-

tom compiler how to parallelize the code. Because ThreadStorm-based appli-

cations are so dependent on the compiler, porting such code to other archi-

tectures while maintaining its parallel nature is rather difficult.

Conditionally created threads are called “futures” in ThreadStorm archi-

tecture terminology, and are used to indicate that threads need not be created

now, but merely whenever there are resources available for them. This can

be crucial, as each ThreadStorm processor can handle at most 128 threads,

while extremely parallel algorithmsmaynaturally generate significantlymore.

The qthread API’s “futures” feature is analogous to the ThreadStorm feature.

A key application of this is in loops. While a given loopmay have a large num-

ber of entirely independent iterations, it is typically unwise to spawn all of

the iterations as threads, because each thread has a context and eventually

the machine will run out of memory to hold all the thread contexts. Limiting

the number of concurrently extant threads limits the amount of overhead that

will be used by the threads. In a loop, the option to stall the thread creation

54

while the maximum number of threads still exist provides the ability to spec-

ify a threaded loop without the risk of using an excessive amount of memory

for thread contexts andwithout customizing the loop implementation for any

specific machine.

Not all of the ThreadStorm’s intrinsic features can be fully emulated. For

example, on aThreadStormmachine, all writes tomemory implicitlymark the

corresponding memory words as full. Of course, when pieces of memory are

being used for synchronization purposes, even implicit operations are done

purposefully by theprogrammer, so replacing implicitwriteswith explicit calls

is trivial. ThreadStormmachines also use an unusual cacheless hashedmem-

ory architecture that presents unique performance characteristics: clustered

memory accesses that provide performance advantages on commodity sys-

tems are a performance hurdle that must be avoided on a ThreadStorm sys-

tem. Additionally, theCraycompiler forThreadStormsystems recognizes com-

mon programming patterns, such as reductions, and transparently optimizes

them. Similarly, it recognizes shareddata intrinsically, andcan transformsome

shared data manipulation into atomic operations transparently. For these

reasons, developers for the ThreadStorm systems are encouraged to develop

“close to the compiler,” a habit which slows porting efforts.

3.6.2 Graph Algorithms and Performance

Three different representative graph kernel algorithms in the MTGL were

ported to use the qthread interface: a search, a component finding algorithm,

and an algebraic algorithm. These algorithms are compared by running them

on three different platforms: a Cray XMT, a Sun Niagara 2, and a traditional

55

multi-core system. The XMT system contains 64 500 MHz ThreadStorm pro-

cessors and 500GBof sharedmemory. Its SeaStar based network is a 3-D torus

in an 8×4×2 configuration. The system was running version 6.2.1 of the XMT
operating system. The Sun Niagara 2 system is a Sun SPARC Enterprise T5240

server with two 1.2 GHz UltraSPARC T2 processors and 128 GB of FB-DIMM

memory. The system was running Sun Solaris 10, 5/08 Release with the Sun

Studio 12 CoolThreads version of GCC. Themore traditional system is a quad-

socket, quad-core 2.2 GHz Opteron with 32 GB of DDR2 memory. It was run-

ning RedHat Enterprise Linux 5.1 with GCC 4.1.2.

Thealgorithmsare testedby running themonR-MAT [27] generatedgraphs

with 221, 223, and 225 vertices. Two classes of R-MAT graphs are used: “nice”

and “nasty.” The “nice” graphs feature two natural communities in opposing

quadrantswithmany levels of recursion. Themaximumvertex degree in these

graphs is very low—in a graphwith a quarter of a billion edges, themaximum

degree is roughly a thousand. The “nasty” graphs feature a steeper degree dis-

tribution, with a maximum degree of 200,000 in graphs with a quarter billion

edges. The idea is that load balancing should be more difficult in the nasty

graphs.

3.6.2.1 Breadth-First Search

Breadth-first search (BFS) is oneof themost fundamental graphalgorithms,

as it is the basis for developingmany other algorithms. Furthermore, it is well-

suited for parallelization. The standard BFS algorithm is presented in Fig-

ure 3.13. There are two aspects to this algorithm that form bottlenecks in a

parallel environment. First, the for loop on line 11 will make many synchro-

56

1: procedure BFS(G , s)
2: for all vertex u ∈V [G]− {s} do
3: color [u] ←WHITE
4: d [u] ← inf
5: end for
6: col or [s] ← GRAY
7: d [s] ← 0
8: Q ←;
9: while Q ̸= 0 do
10: u ←DEQUEUE(Q)
11: for all vertex v ∈ Ad j [u] do
12: if col or [v] =WHITE then
13: color [v] ← GRAY
14: d [v] ← d [u]+1
15: ENQUEUE(Q, v)
16: end if
17: end for
18: col or [v] ← BLACK
19: end while
20: end procedure

Figure 3.13. The Basic BFS Algorithm

nized writes to the color array, forming a bottleneck. The second bottleneck

is the ENQUEUE operation of line 15, which typically involves incrementing

the queue’s tail pointer. The MTGL avoids these problems by chunking and

sorting the vertices and by maintaining thread-local copies of the col or array

that are periodically merged.

Figure 3.14 presents the results of running the MTGL’s BFS algorithm on

both the Opteron-based system and theNiagara 2 system. The qthread-based

implementation of the BFS algorithm seems to scale effectively on both plat-

forms.

57

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 4 8 16

R
u

n
ti
m

e
 (

s
e

c
s
)

Number of Threads
21 Nice

21 Nasty
23 Nice

23 Nasty
25 Nice

25 Nasty

(a) Opteron

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 4 8 16 32 64 128

R
u

n
ti
m

e
 (

s
e

c
s
)

Number of Threads
21 Nice

21 Nasty
23 Nice

23 Nasty
25 Nice

25 Nasty

(b) Niagara 2

 2

 4

 6

 8

 10

 12

 1 2 4 8 16 32 64 128

S
p
e
e
d
u
p

Threads/Processors Used

Opteron Nasty
Opteron Nice

Linear

Niagara Nasty
Niagara Nice

(c) Scaling 225 Graphs

Figure 3.14. Breadth-First Search

3.6.2.2 Connected Components

A connected component of a graph G is a set S of vertices with the prop-

erty that any pair of vertices u, v ∈ S are connected by a path. Finding con-

nected components is a prerequisite for dividing many graph problems into

smaller parts, and so is particularly important to do quickly. The canonical

parallel connected-component algorithm is the Shiloach-Vishkin [155] algo-

rithm (SV). However, both synthetic random graphs [57] andmany real-world

graphs (such as social networks and theWorld-WideWeb) have a single “giant

58

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 1 2 4 8 16

R
u

n
ti
m

e
 (

s
e

c
s
)

Number of Threads
21 Nice

21 Nasty
23 Nice

23 Nasty
25 Nice

25 Nasty

(a) Opteron

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 4 8 16 32 64 128

R
u

n
ti
m

e
 (

s
e

c
s
)

Number of Threads
21 Nice

21 Nasty
23 Nice

23 Nasty
25 Nice

25 Nasty

(b) Niagara 2

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 4 8 16 32 64

R
u

n
ti
m

e
 (

s
e

c
s
)

Number of Processors
GCC-SV: 25 Nasty

GCC-SV: 25 Nice
SV: 25 Nasty

SV: 25 Nice

(c) XMT

 5

 10

 15

 20

 25

 30

 35

 1 2 4 8 16 32 64 128

S
p
e
e
d
u
p

Threads/Processors Used

Opteron Nasty
Opteron Nice

Niagara Nasty
Niagara Nice

XMT Nasty
XMT Nice

Linear

(d) Scaling 225 Graphs

Figure 3.15. Connected Components

component” (GCC). The SV algorithm works by assigning a representative to

each vertex. Toward the end of the algorithm, all vertices in the giant compo-

nent are pointing at the same representative, forming a severe bottleneck. The

MTGL includes an alternate algorithm, dubbed “GCC-SV”, that leverages the

existence of the GCC to optimize the SV algorithm. Figure 3.15 presents the

results of running this benchmark with the qthread-based implementation.

TheXMT implementationdoesnot useqthreads, and is presented for com-

parison. The qthread-based implementations, on the Opteron and Niagara 2

59

systems, do scale. Note that the “nasty” datasets are actually themost friendly

to the algorithm, as most vertices fall into the giant component and thus re-

duce the work the algorithm needs to do. Interestingly, both of the qthread-

based implementations top out at approximately four times faster. This is

likely due to an unresolved bottleneck in one of the MTGL data structures.

3.6.2.3 PageRank

ThePageRankalgorithm, a linear algebraic technique formodeling theprop-

agationof votes throughadirected graphwhere each vertex contributes a frac-

tion of its vote to each of its out-neighbors, was made famous by Google for

ranking web pages [139]. Ranks continue propagating until the vote totals

converge. Figure 3.16 shows the vote accumulation loops of PageRank used by

theMTGL on the XMT. The structure of these loops enables the XMT compiler

tomerge them into one, and to remove the reduction of votes into the variable

total from the final line of the inner loop. The result is excellent performance.

This is simulated inQthreads, using the explicit qt_loopaccum_balance() accu-

mulation loop function, to achieve good scaling onmulti-core machines.

Figure 3.17 presents the results of running the PageRank algorithm. As in

the previous benchmark, the XMT implementation does not use qthreads but

is included for comparison. While the qthread implementation does not ex-

actly replicate the work of the XMT compiler, it still provides a significant par-

allel performance benefit.

60

#pragma mta assert nodep
for (int i=0; i<n; i++) {

double total = 0.0;
int begin = g[i];
int end = g[i+1];
for (int j=begin; j<end; j++) {

int src = rev_end_points[j];
double r = rinfo[src].rank;
double incr = r / rinfo[src].degree;
total += incr;

}
rinfo[i].acc = total;

}

Figure 3.16. Inner Loop of PageRank in the MTGL on the XMT

3.7 Conclusions

Large scale computationof the sortperformedby scientific computingcom-

putational libraries canbenefit significantly from low-cost threading, asdemon-

strated here. Lightweight threading with hardware support is a developing

area of research that the qthread API assists in exploringwhile simultaneously

providing a solid platform for relatively lighter-weight threading on common

operating systems. It provides basic lightweight thread control, locality con-

trol, and synchronization primitives in away that is portable to existing highly

parallel architectures as well as to future and potential architectures. Because

theAPI canprovide scalableperformanceonexistingplatforms, it allows study

and modeling of the behavior of large scale parallel scientific applications for

the purposes of developing and refining such parallel architectures.

61

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16

S
e

c
s
 p

e
r

it
e

ra
ti
o

n

Number of Threads
21 Nice

21 Nasty
23 Nice

23 Nasty
25 Nice

25 Nasty

(a) Opteron

 0

 20

 40

 60

 80

 100

 120

 1 2 4 8 16 32 64 128

S
e

c
s
 p

e
r

It
e

ra
ti
o

n

Number of Threads
21 Nice

21 Nasty
23 Nice

23 Nasty
25 Nice

25 Nasty

(b) Niagara 2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4 8 16 32 64

S
e

c
s
 p

e
r

It
e

ra
ti
o

n

Number of Processors
25 Nasty

(c) XMT

 10

 20

 30

 40

 50

 60

 1 2 4 8 16 32 64 128

S
p
e
e
d
u
p

Threads/Processors Used

Opteron Nasty
Opteron Nice

Niagara Nasty

Niagara Nice
XMT Nasty

Linear

(d) Scaling 225 Graphs

Figure 3.17. PageRank

62

CHAPTER 4

VISUALIZING APPLICATION STRUCTUREWITH THREADSCOPE

4.1 Introduction

The previous chapter discussed some of the issues involved in large scale

lightweight threading and presented the qthread lightweight threading API,

designed to tackle those problems. However, a threading interface by itself,

nomatter how intelligent, cannot guarantee performance for a parallel appli-

cation.

Because of its inherent nondeterminism,multithreaded programming has

always been a challenging task. In addition to the standard programming is-

sues, programmers must also avoid errors specific to parallel execution such

as race conditions and deadlocks. Synchronization bugs can hide in programs

for years, undetected until a specificmachine configuration or scheduling or-

der is used. Programmers must also deal with new performance issues like

data structure contention and variable levels of available parallelism. Paral-

lelism problems become more complex and hard to analyze or predict as the

scale of parallel execution increases, particularly into the teraflop computing

range and beyond.

ThreadScope, presented in this chapter, assists the programmer with un-

derstanding, troubleshooting, and debugging large scale multithreaded pro-

63

grams. It is a structural visualization mechanism and visual language for un-

derstandingmultithreadedprograms. ThreadScopeuses existing tracing tools

to instrument multithreaded applications and uses those traces to visualize

the logical structure. The logical structure of multithreaded programs does

not rely on a specific order of execution other than that specified by synchro-

nization methods. In many situations, this approach can detect threading

problems without needing to replicate them in execution.

The high level structure of a program reveals the program’s parallel and

sequential components, as well as its potential bottlenecks. This structure is

usually independent of theunderlyingmachine, thoughmaybedependent on

the program’s input. Graphs of the structure can be dense and detail-heavy.

The challenge in any dense visualization is decidingwhere to expand and con-

densedetails. To clarify and simplify the visual depictionof theprogramstruc-

ture, ThreadScope employs a static single assignment form to remove pro-

gramming idioms and coalesce memory cells into logical memory objects.

These simplification techniques demonstrate how application-specific data

structures can be handled. Race conditions and deadlocks are identified by

analyzing the graph structure. Unlike some correctness checkers [81], this ap-

proach does not require the software to be described in a new special-pur-

pose language, but can address existing applications without modification. A

few key operations—reading and writing to memory, synchronization oper-

ations, and spawning or joining threads—are the basic structural elements

of any multithreaded application. Thus, this analysis technique can be used

both in the debugging process and the design process.

64

This approach relies on fundamental building blocks of multithreaded ap-

plications and is not specific to a particular threading library or model. This

chapter demonstrates ThreadScope’s visualization capabilities and analysis

features on several programs using a variety of parallel programmingmodels,

and discusses the use of this visualization for structural identification of prob-

lems. The programming models used include the Cilk threading library [16],

the standard pthread library [136], and the qthread threading library [182].

These models were chosen for their variety of synchronization mechanisms

and their explicit parallelism—and the qthread library can generate Thread-

Scope traces itself—however the ThreadScope techniquemay be adapted for

use with additional environments.

Thekeyadvanceof this chapter is theThreadScopevisualization tool,which

provides a graph-based approach to understanding application structure and

identifying errors. It can be used to understand the structure ofmultithreaded

applications for the purpose of bridging the gap between logical and actual

parallelism. As discussed in Chapter 2, the key to obtaining portable perfor-

mance is efficient mapping of logical parallel structure onto the physical ma-

chine topology. ThreadScope diagrams are also useful for identify race con-

ditions and deadlocks as well as predict potential bottlenecks and recognize

the underlying programming model. Identification of livelocks and analysis

of message-passing parallel applications are venues for future work.

4.2 Methodology

The graphs presented in this chapter are the result of a two-stage data col-

lection and analysis process. In the first stage, a program, such as the example

65

Cilk program in Figure 4.1(a), is traced by an existing tracing tool. This trace is

translated into an “event description” language. Tracing the program in Fig-

ure 4.1(a) produces the event description in Figure 4.1(b). ThreadScope in-

cludes tools for generating event descriptions from the output of several trac-

ing tools, including Dtrace [24], Apple’s libamber [6], the SST simulator [148],

and the qthread library. Other tracing tools could be used to produce similar

event descriptions; the basic requirement is the ability to detect thread and

synchronization operations. In the second stage, ThreadScope uses the event

description to generate dot attributed graph language, which is rendered by

the GraphViz [64] graphics package into a graph similar to Figure 4.1(c).

A ThreadScope graphG is a pair (V ,E)where V is a set of vertices and E is a

set of directed edges (u, v) between the vertices u and v where E ⊆ {(u, v)|u, v ∈
V ∧u ̸= v}. There are two types of vertices and three categories of edges. The

vertices represent either serial executionblocks ormemoryobjects. Execution

blocks are graphically represented by round vertices, andmemory objects are

represented by rectangular vertices, scaled to represent their size. Each exe-

cution block is given a unique identifying number, as are objects. When the

graph is drawn, the first execution block is colored gray to identify it. The edge

categories are thread operations (spawns, joins, and continuations), memory

operations (reads, writes, and atomic read/writes), and memory object iden-

tity transitions. Read andwrite edges come in a further two varieties, to distin-

guish atomic or synchronous operations from potentially unsafe operations.

A thread, as ThreadScope defines it, is a sequence of execution blocks that are

connected by thread continuations. Thread continuations are implicitly in-

sertedwhenever an execution block executes a potentially blocking operation

66

1 #include <cilk-lib.cilkh>
2 #include <stdlib.h>
3 cilk int genrand() {
4 return random();
5 }
6 cilk int main() {
7 int obj1 = spawn genrand();
8 int obj2 = spawn genrand();
9 sync;
10 return obj1 + obj2;
11 }

(a) Trivial Cilk Program

MALLOC now=3 addr=0x100 size=40
MALLOC now=5 addr=0x200 size=40
INIT now=10 tid=1 frame=0x100 threadid=0x0.0
INIT now=11 tid=1 frame=0x200 threadid=0x0.0
SPAWNED now=12 tid=2 frame=0x100 entry=1
SPAWNED now=13 tid=3 frame=0x200 entry=1
MWRITE now=22 tid=2 addr=0x104 size=4
MWRITE now=23 tid=3 addr=0x204 size=4
ENDED now=24 tid=2 frame=0x100 entry=1 next=2
ENDED now=25 tid=3 frame=0x200 entry=1 next=2
SYNC now=30 tid=1 threadid=0x0.0
MREAD now=32 tid=1 addr=0x104 size=4
MREAD now=34 tid=1 addr=0x204 size=4
FREE now=36 tid=1 addr=0x100
FREE now=36 tid=1 addr=0x200

(b) ThreadScope Event Description Log of
Program in Subfigure (a)

1

2 3

4

obj1 obj2

(c) Graph Generated from
Event Log in
Subfigure (b)

Figure 4.1. Basic ThreadScope Stage Example

that necessarily establishes a “happens-before” dependency [102] on every-

thing that follows it.

On these pages, the graphs are monochromatic, which can make distinc-

tions between edge-types difficult to see. In practice, edges are presented in

color. Here, thread operations are represented by solid edges. Thread con-

tinuations are represented by thick black edges, spawns by thin black edges,

and joins by thin gray edges. Memory operations are represented by dotted or

67

dashed edges, for safe and unsafe operations, respectively. Reads are gray and

writes are black. Atomic read/write operations are dotted with circles at both

ends. Memory object transitions are thick, dashed, light gray lines.

For example, in Figure 4.1(c), roundnodes 1 and4 correspond to the main()

function from Figure 4.1(a); node 1 represents lines 6–8 and node 4 represents

lines 9–11. The sync operation in line 9 divides the thread into two execution

blocks because it is a potentially blocking operation. Nodes 2 and 3 are both

instances of the genrand() function, spawned in lines 7 and 8, respectively.

They each write to a memory object (obj1 and obj2) and exit. The spawn oper-

ations in lines 7 and 8 are indicated by the thin black edges of the graph, and

the sync operation is indicated by the thin grey edges.

The graph is a progression through the logic of the program where paral-

lelism is the x axis and the y axis represents logical ordering. The number of

potentially concurrent actions at any point in the threaded program is equal

to the number of solid lines or nodes at the y coordinate corresponding with

the logical progression through the program. Themaximumnumber of nodes

or solid edges crossed by a horizontal line at that y coordinate is themaximum

theoretical parallelism at that point.

4.2.1 Tracing

Event descriptions can be generated from a variety of tracing tools, from

instrumented threading libraries, to runtime function call interceptors [127],

to full instruction logs. ThreadScope’s current set of event-collection tools are

based on one of three data collection methods: instrumenting the threading

library, system-level runtime tracing, and full instruction traces. In partic-

68

ular, there are implementations for the qthread library, Dtrace [24], Apple’s

libamber [6], and Sandia’s SST simulator [148]. BecauseThreadScopepresents

trace-based parallel application structure, it works best when that structure

does not depend on the input. The parallelism presented in ThreadScope

graphs is entirelydependentupon theparallelismrequestedduring the instru-

mented application run. In a parallel environment like Cilk or pthreads that

supports only explicit parallelism, all programmatic parallelism—the paral-

lelismexpressedby theprogrammer—is expressedat runtimeandcanbe cap-

tured and expressed in aThreadScope graphby a runtime tracing tool. Implic-

itly parallel environments, such as OpenMP [137] or UPC [55], usually adapt

the programmatic parallelism to the available parallelism in ways that are not

detectable at runtime without language-level instrumentation. Graphing the

programmatic parallelismof an implicitly parallel environmentwould require

generating the event description log at the level where the programmatic par-

allelism is visible, such as in the compiler or the threading library.

Each tracing method has both benefits and drawbacks. For example, an

instrumented threading library can provide event tracing with relatively low

overhead and can faithfully record all thread and synchronization operations.

However, an instrumented threading library usually traces the entire execu-

tion of the program, which may not be desired. Additional functions to con-

trol tracing behavior canbe added to the threading interface andprogram, but

this solution would require modifying and recompiling the program in order

to analyze it.

System-level runtime tracing, such as with valgrind [127] or Dtrace [24],

provides the ability to track function calls or even track specific instructions.

69

The overhead of this type of tracing depends on how intrusive it is. For exam-

ple, a Dtrace script can detect basic thread operationswith relatively low over-

head, and can be limited to tracing only a portion of an application’s runtime.

However, the utility of Dtrace event logs is limited because Dtrace cannot de-

tect individual memory accesses. Examples of graphs based onDtrace output

are Figures 4.2, 4.3, and 4.4.

Full instruction tracers, such as Apple’s libamber [6] trace generator or San-

dia’s cycle-accurate Structural Simulation Toolkit [148], record every instruc-

tion and can track everymemory operation. This thoroughdata collectionhas

a relatively high cost. Cycle-accurate simulation has the highest overhead, but

avoids perturbing instruction ordering and thus can observe application be-

havior without affecting it. The event description in Figure 4.1(b) was trans-

lated from the verbose output of the SST simulator.

Every tracing technique has overhead associated with it. Inmany cases, as

illustrated in Table 4.1, a great deal of overhead. The numbers in that table

compare the execution time of each program run uninstrumented to the exe-

cution timewith instrumentation. Inmost cases there is someadditionalpost-

processing time necessary to generate the event log from the trace outputs.

The overhead of the tracing technique is primarily of importance when con-

sidering how long it will take to debug the program, it does not affect correct-

ness unless the application being traced has strict timing requirements. This

is especially true for cycle-accurate simulation, because the application being

simulated is not aware of real wall-clock time, and the overhead of recording

each instruction has no impact on execution order.

70

TABLE 4.1

TRACING OVERHEADS

COMPARED TOUNINSTRUMENTED EXECUTION

Benchmark
Instrumented

Thread Library
System-Level

Tracing
Instruction

Tracing

Mantevo HPCCG 1.01x 22.39x 19698.79x

MTGL pagerank 3.49x 58.19x 8692.25x

piping 1.09x 72.85x 108.76x

4.2.2 The Event Description

Each event in ThreadScope’s event language consists of a type and sev-

eral attributes in key=value form. The basic thread lifetime events are INIT,

SPAWNED, and ENDED, corresponding to when threads are allocated, run, and

complete. Synchronization events include LOCK, UNLOCK, SYNC, WAIT, INCR and

several others representing full-empty bit operations. Memory accesses are

described by MWRITE and MREAD events. Unknown event types are ignored by

the graph generator, thus allowing the event language to be expanded to sup-

port new types of analysis. For example, malloc-related events (MALLOC, FREE,

and REALLOC) were added late in the development process to enhance mem-

ory object tracking. The event descriptions do not generally include data from

within the threading libraries or system libraries. The event logs omit this in-

formation purposefully, to focus on thread-level application behavior.

Every event has a monotonically increasing timestamp, now, and a loca-

tion or worker-thread identifier, tid. Other attributes depend on the event.

Threads are uniquely identified by a tuple of their frame identifier— typi-

71

cally the address of the thread’s bookkeeping structure or stack, which can be

reused—and the timestamp that they began executing. For example, the INIT

event indicates that a thread has been allocated. It has a frame attribute that

indicates the identity of the thread being initialized. The INIT event specifies

the identity of the thread generating the eventwith the threadid attribute; the

default value for threads that are not spawned is 0x0.0. The SPAWNED event

indicates that a previously allocated thread has begun executing. This event

defines a thread’s identity (for future use in a threadid attribute), and so has

three required fields: now, tid, and the relatively unique frame attribute. It

has one optional field, entry, used for threading environments that allow for

continuations. The ENDED event indicates that a thread has stopped execut-

ing. It requires the now and tid fields, as well as a frame field and an indica-

tionwhether the thread is expected to continue. This indication is an optional

next field that specifies what entry number the frame will next use. Subse-

quent SPAWNED events are considered to be continuations of previous threads

if their frame and entry values match the frame and next values of an ENDED

thread.

Memory is trackedby its address, and so synchronization events andmem-

ory accesses require an addr attribute. However, memory is typically treated

as a collection of logical storage “objects” rather than as a large set of sequen-

tially addressed one-byte storage units. Thus, ThreadScope tracks the threads

and memory objects used in an application as objects with relationships to

eachother to simplify application structure. Memoryaddresses canbegrouped

into objects, for example as the result of MALLOC events.

72

2

7 8 9

12

3

13

4 5 6

10

11

1

25

15 14 16 17 18

24

19 20

22

23

21

Figure 4.2. Structure of a Cilk Application With a Bottleneck
(without memory references)

4.2.3 Visual Representation

The first component of visualizing the structure of an application is to rep-

resent the relationships between its threads. Very simple relationships were

illustrated in Figure 4.1(c).

A graphof this nature, for a given execution of a parallel application, can be

generated for any threadingmechanismthathasuniquely identifiable threads.

It demonstrates the logical connections between threads, and can be useful

for identifying potential bottlenecks in the application. Regions where there

is no available parallelism are bottlenecks that can be visually identified using

this graphing technique. For example, Figure 4.2 depicts a simple threaded

application with an obvious bottleneck.

The graph in Figure 4.2 does not indicate the severity of the bottleneck; it

may be the synchronization and respawning of more threads or something

more computationally intensive. The graph only reveals that there is a section

73

Figure 4.3. Structure of Cilk Bucketsort
(overview without details)

of the program (node 13, near the center) that cannot execute in parallel. That

information is often a fact worth investigating when attempting to improve

application performance. Figure 4.2 is a small excerpt from a Cilk application

performing a parallel bucket sort. The full graph of this application is pre-

sented in Figure 4.3. Even without reading the source of the application, it is

clear that it has two bottlenecks of the sort illustrated in Figure 4.2. These bot-

tlenecks segment the computation into three parallelized segments and four

purely serial segments.

4.3 Memory Access Patterns

Once the structure of an application has been analyzed, the next step in

performance and correctness analysis is to examine the program’s memory

access patterns. Even small programs generate a large volume ofmemory ref-

erences. Including them all in a graph would make it dense and difficult to

analyze. Making sense of the graph requires displaying only the memory ref-

erences that aremeaningful, and including them in the graph in ways that are

helpful to the problem that is being analyzed. Exactly which memory refer-

74

ences are meaningful depends on the application and the situation, but there

are some general simplifications that are frequently helpful in presenting a

clearer picture of application behavior.

4.3.1 Improving Visual Clarity

Oneway topresent a clearer picture is to eliminate from the graphallmem-

ory locations that arenotwritten. This is useful for clearly presenting race con-

ditions, programming errors, and synchronization bottlenecks. For example,

Figure 4.4 illustrates the qt_loop_balance() function from the qthread library.

The qt_loop_balance() function spawns a number of threads. Each thread,

justbefore exiting, increments a sharedcounterwith theatomic qthread_incr()

function. The parent thread will wait for each thread to finish in turn. Each

time a thread finishes, the shared counter’s value is checked against the num-

ber of threads the parent spawned. If the counter’s value is equal to the num-

ber of threads originally spawned, the parent can avoid checking the return

values of the remaining threads.

In Figure 4.4, the dotted edges beginning and ending in grey circles are

the atomic increment operations (qthread_incr()), the dotted black edges are

synchronizedmemorywrites (in this case, writing the return code of the func-

tion), and the grey edges (both dotted and dashed) are the relevant memory

reads. In this case, a memory read is considered relevant if the read was ei-

ther a blocking operation (qthread_readFF(); the dotted grey edges) or oper-

ated on an object that had previously been written to. The graph illustrates a

qt_loop_balance() loop that spawned ten threads. Each thread wrote to both

the shared counter and the thread’s return-value location. The parent thread

75

1

2 34 5 67 8 9 10 11

12

obj1 obj2 obj3obj4 obj5 obj6obj7 obj8 obj9 obj10 obj11

13

14

15

long qt_loop_wrapper(qthread_t *me,
const struct wrapper_args *arg)

{
arg->func(me, arg->startat,

arg->stopat, arg->arg);
qthread_incr(arg->donecount, 1);
return 0;

}

size_t iterend = start;
size_t each = len / NUM_SHEPHERDS;
int donecount = 0;
for (i=0;i<NUM_SHEPHERDS;i++) {

array[i].startat = iterend;
array[i].stopat = iterend += each;
array[i].donecount = &donecount;
array[i].arg = arg;
if (extra > 0)

{ array[i].stopat++; extra--; }
qthread_fork_to(qloop_wrapper, &(qwa[i]),

&(rets[i]), i);
}
for (i=0;donecount<NUM_SHEPHERDS;i++)

qthread_readFF(me, NULL, &(rets[i]));

Figure 4.4. Structure of qt_loop_balance() Spawning Ten Threads
with C Source Code

waited on three of the threads via a blocking operation (qthread_readFF()),

each time checking the shared counter before waiting on the next thread. It

waited on only three threads to finish (2, 3, and 4) before observing that the

shared counter was the correct value.

Figure 4.4 is a small snippet of a graph generatedby theHPCCG [76] bench-

mark. A larger snippet, representing about 3%of its total runtime, is presented

in Figure 4.5(a). This benchmark relies heavily on qt_loop_balance(). Since

this function is used sequentially, and frequently, its serial components have

the potential to become a bottleneck. Note that the structure of the program

76

can be observed in the memory and thread behavior, without requiring a pri-

ori knowledge of memory layout, data structures or the programmer’s intent.

Considering only memory locations that are accessed by multiple threads

is another useful simplification. For example, in a simple threaded matrix

multiplication implementation, each memory location should only be writ-

ten to by a single thread. If multiple threads write to the same memory loca-

tion, that is probably a bug. Threads also typically use thread-specific scratch

memory, often in the stack, that has no direct bearing on the logical struc-

ture or correctness of the application. The previous qt_loop_balance() struc-

ture simplifies slightly with this technique andmakes the flow of information

clearer, as illustrated in Figure 4.6. The HPCCG benchmark’s graph is simpli-

fied this way in Figure 4.5(d).

4.3.2 Object Condensing

Programmers typically treatmemoryasa collectionof logical objects rather

than as a collection of sequentially addressed bytes. As such, displaying the

logical objects rather than the addressed bytes simplifies the visual represen-

tation of memory operations. However, objects are hard to define conceptu-

ally; identifying them from an otherwise unidentified stream of memory ad-

dresses is virtually impossible. For example, an array may intuitively be an

object, but it may be more useful in some situations to treat each element of

the array as a separate object. More complex data structures only add to the

problem. With limited a priori knowledge, the best approach is a winnowing

process, consisting of successive identifications of important memory refer-

ences from the set of unidentified references.

77

(a) Including Only
Written Addresses

(b) Including Only Written Addresses
(Closeup of (a))

(c) Including Only Shared Addresses
(Closeup of (d))

(d) Including Only
Shared Addresses

Figure 4.5. Structure Graphs of 3% of the HPCCG Benchmark
(overview without details)

78

1

2 3 45 6 7 8 9 10 11

12

obj1obj3 obj6 obj12

13

14

15

Figure 4.6. qt_loop_balance() Spawning Ten Threads, Memory
Limited to Multiple-Accesses

Inmany cases, shareddata structures areprotectedby synchronizationop-

erations of some kind, such as mutual exclusion locks, semaphores, or ful-

l/empty bits. In a very real sense, shared objects are defined by the locks that

protect them, and obtaining the lock indicates that the lock’s associatedmem-

ory object is about to be accessed. Because of this behavior pattern, objects

that are associatedwith specific locks can be extracted from a streamofmem-

ory address referencesby tracking the stateof synchronizationoperationsdur-

ing memory access. In the case of mutex locks, whenever a thread accesses

a memory location, that location is associated with whatever locks are cur-

rently held by the accessing thread. If an address is ever accessed without

those locks, then it is not protected by them and cannot be considered part

of the memory object associated with that lock. By the end of a sequence of

memory references andmutex operations, each lock is definitively associated

with the set ofmemory addresses that it protected during that sequence. That

set of memory addresses comprises a single logical memory object. This ob-

ject may not be contiguous andmay not be entirely what the programmer ex-

79

pected or intended, but it is a de facto memory object. Addresses that are ac-

cessed by multiple threads without a lock may indicate programming errors,

and deserve closer attention.

Memory addresses that are not protected by synchronization operations

can be clustered into objects in other ways. References to stack variables and

global data can be identified not only by considering the memory region, but

also with the aid of debugging information stored in the application binary.

Memory references into the “heap” region of the address space can be

associated with the allocated region to which they belong— as defined by

malloc(), brk(), mmap(), etc.—however that association is often insufficiently

specific. Memory pools, arena allocation, and structured mmap()ed files are

all situations where usefully identifying discretememory objects can be espe-

cially difficult if they are not associated with synchronization operations. It is

possible to take a probabilistic approach, estimating discretememory objects

with the help of proximity and temporal access patterns. However, without

a priori knowledge of the application, grouping memory references into ob-

jects is, at best, a probabilistic guessing game. The only option that guaran-

tees relative correctness is to assume that each unprotectedmemory location

is an independentmemoryobject—though theoverabundanceof tiny objects

makes useful visualization challenging.

4.3.3 Memory Re-Use

Memory re-use impacts the observed structure of the application. Allo-

cated memory and stack addresses are often reused, even though the object

they represent has changed. It is generally considered good practice to reuse

80

1

23 45 6

13

obj1obj2obj3 obj4obj5 obj6

789

obj712

obj8

obj9

obj10 obj11

obj12

10

obj13

11

obj14

obj15

18 17 16 14 15

25

192120

24

22

23

(a) Naïve

1

234 56

obj1 obj3obj4obj5 obj6obj7

13

78 9obj13

12

obj15obj17 obj19obj21

obj23obj25 10

11

obj29

obj2

15 1416 17 18

obj8obj9obj10 obj11obj12

obj14obj16obj18 obj20obj22

obj24

19

obj26

obj27

obj28

21

23

obj30

20

obj31

obj32

22

25

24

(b) SSA-Like Identity Tracking

Figure 4.7. Structural Impact of Memory Access and Identity Tracking

memory asmuch as possible to take advantage of processor caches. Thus, op-

timized algorithms typically reusememory for unrelated computations. If the

logical status of a memory object is not considered, structure can be difficult

to extract; the threadswill all appear to be operating on the samememory. For

example, Figure 4.7(a) is the same program that was illustrated in Figure 4.2,

but with memory references added. The logical structure so easily seen in the

original graph has become hard to discern.

Themost direct way of determining the logical identity of amemory object

is to keep track of when it is allocated and deallocated: when it is deallocated,

thememory is logically reset and if that memory is re-allocated, it clearly rep-

resents an entirely new logical object. Unfortunately, allocation and dealloca-

tion typically only apply to heap-type memory regions, and even then are not

always easy to recognize—for example, in applications that implementmem-

81

ory pools or that simply re-use variables. Allocation anddeallocation tracking,

without the source-level modification to provide more information, is an in-

complete and thus unreliable approach.

ThreadScope can also track the logical identity of memory by assuming

that a memory block’s identity changes when it is written. This approach is

commonly known in the compiler community as Static Single Assignment

(SSA) [41]. This divides a memory block’s existence into separate identities

much in the same way that threads are separated into connected execution

blocks. The use of strict SSA to establish memory identity transitions means

that each memory block may eventually obtain a large number of identities.

Most of these identities are irrelevant to the overall flow of the application and

can be merged together. Important memory references can be focused on

by applying the previously discussed simplification heuristics, such as elim-

inating memory object identities that are not accessed by more than one

thread. The operations upon and previous identities of a memory object im-

pact whether an object must be considered to be shared by multiple threads.

For instance, if amemory object is re-usedbynon-concurrent threads, the two

instances aredistinct only if the second threadwrites to theobject before read-

ing from it. If the first action on the object is a read, the objectmust be treated

as sharedwith the threads that hadpreviously used it. Figures 4.7(a) and 4.7(b)

represent the same program, but Figure 4.7(b) has a clearer structure because

of this type of identity-tracking.

82

4.3.4 Condensing Structure with A Priori Knowledge

Not all memory references are equally important to analysis and debug-

ging. For example, a shared data structure—such as a hash table or a linked

list—may occupy a large discontiguous portion ofmemory. If that data struc-

ture and its accessor functions are assumed to be correct, or at least outside

the scope of analysis, it can be beneficial to represent that data structure in

the graph as a single object, rather than as a large set of independent memory

locations.

ThreadScope’s memory tracking can be modified by adding new events to

the event description, thereby providing a priori information about the ap-

plication’s behavior. For example, malloc()-tracking, uses MALLOC, FREE, and

REALLOC events to define memory objects.

Figure 4.8 illustrates the potential risks and benefits of redefining mem-

ory objects. Figure 4.8(a) is an example of a program with three threads that

each insert an entry into a shared hash table and then get it back out again. In

this case, the hash table is a simplistic one that allocates a separate object for

each key/value pair with malloc(). Figure 4.8(b) presents the result of using

memory allocaiton to definememory objects. The structure is relatively clear.

Another way of condensing is to isolate objects by their operand functions.

Figure 4.8(c) reduces the hash table to a single logical object that is accessed

by multiple threads. Note that, like Figure 4.7(a), the logical structure of the

graph is obscured by reducing thememory objects too far. Unfortunately, de-

termining the existence of a hash table and isolating key and value pairs is

difficult to do automatically from an otherwise nondescript address stream.

83

1

23 4

obj4

obj5 obj8

obj15obj17obj19 obj21 obj23 obj25

12

5

6

7

8

obj6 obj9 obj16obj18

obj7 obj10obj20 obj22

10

obj27 obj11 obj24 obj26

13

9obj12

obj1

obj2

15

obj3

16

obj13

obj14

11

14

(a) Individual Memory References

1

23 4

obj1Hash
Value 1

Hash
Value 2

Hash
Value 3

12

56 7

8

Hash
Value 1

Hash
Value 2

10

Hash
Value 3

13

9

obj5obj4

15

obj2

16

1114

(b) Condensing Malloc-
defined Blocks

1

2 34

obj4

The Hash

12

5

67

8

1013

9

obj1

obj2

15

obj3

16

1114

(c) Condensing
Class-defined
Blocks

Figure 4.8. Simple Hash Table Application, with Memory Object
Condensing Options

Events representing hash table operations need to be added to the event log

to mask the hash implementation’s specific behavior.

4.4 Isolating Potential Problems

Identifying problems in parallel applications when there are few parallel

threads of execution is not particularly difficult: the graphs have few compo-

nents and the patterns of possible errors are easy to recognize visually. How-

ever, as the number of threads and the scale of the application increases so

does the complexity and size of the thread structure graphs. Merely rendering

the entire graph can be a challenge when analyzing an application that uses

84

thousands of threads. One powerful option for handling large graphs is the

ZGRViewer tool [143]. ZGRViewer provides a quick way to navigate, magnify,

and locate nodes in extremely large GraphViz-based graphs. Without such

a tool, useful analysis requires that the volume of data presented in a single

graph be limited to areas of interest, such as problem areas. There are two pri-

mary components to isolating potential problems in a thread structure graph:

identification of areas of interest in the graph and selective display of only the

portions of the graph relevant to that interest.

4.4.1 Structural Threading Problems

Some of the most basic problems that afflict threaded programs are struc-

tural problems that can be revealed and identified graphically. Problems such

as race conditions and deadlocks are common errors that can often be discov-

ered by analyzing the structure of the graph of the program.

4.4.1.1 Deadlocks

Tracking a deadlock down using a basic debugger can be an especially dif-

ficult exercise when there are a large number of locks involved. Deadlock is

defined by the four Coffman conditions [31]:

1. Mutual exclusion

2. Hold and wait

3. No preemption

4. Circular wait

85

Inmostmultithreading programmingmodels, the first three conditions for

deadlock are assumed. The fourth, circular wait, is a structural description

that becomes apparent from the thread structure graph of a deadlocked pro-

gram, even if the program does not deadlock during execution.

Figure 4.9(a) presents a program that does not necessarily deadlock, but

has the potential. In this program, two threads lock two locks. One thread

(starting with node 2) locks the first lock (obj1/2/3), unlocks it, then locks and

unlocks the second lock (obj4/5/6). The other thread (starting with node 3)

locks the second lock (obj4), locks the first lock (obj2), then unlocks them in

the same order. Because of the inconsistent ordering, this is a potential dead-

lock that may not occur at runtime. This can be detected with dependency

tracking [157]. The structure graph canbe interpreted as a resource-allocation

graph thatwill have a circuit if deadlock can occur. Figure 4.9(b) highlights the

circular dependency. Note that this program can (and did, during graph gen-

eration) run to completion, despite the potential deadlock, depending onhow

the threads are scheduled. Potential deadlock, however, can be identifiedwith

a depth-first traversal of the graph. When the previous program is rewritten to

ensure that the locks are only obtained in a specific order, as illustrated in Fig-

ure 4.9(c), the circular wait is eliminated. The memory state transitions are

highlighted to illustrate the lack of a cycle in Figure 4.9(d).

4.4.1.2 Race Conditions

There are many different kinds of race conditions, but not all of them can

be easily recognized by even the most advanced automatic analysis system.

Basic race conditions, such as multiple threads manipulating the samemem-

86

1

23

10

obj1

obj2

4

obj3

7

obj4

obj5

5

obj6

6

obj7

obj8

11

8

9

(a) Circular Wait

1

23

10

obj1

obj2

4

obj3

7

obj4

obj5

5

obj6

6

obj7

obj8

11

8

9

(b) Highlighted
Circuit

1

23

9

obj1

obj2

4

obj3

7

obj4

obj5

5

obj6

8

obj7

obj8

11

6

10

(c) No Circular
Wait

1

23

9

obj1

obj2

4

obj3

7

obj4

obj5

5

obj6

8

obj7

obj8

11

6

10

(d) High-
lighted
Dependen-
cies

Figure 4.9. Identification of Potential Deadlock via Structure

ory object without synchronization, can be relatively easily identified. When

the race is to see which piece of data will be placed in a thread-safe memory

object, identifying the race condition can become more challenging. How-

ever, a graph of all of the relevant accesses to a givenmemory object can reveal

the potential for race conditions. If multiple threads access the samememory

object there is a potential race condition and source of concern. Figure 4.10 il-

lustrates three different kinds of sharedmemory access. In Figure 4.10(a), two

threads (2 and 3) attempt to write into the same memory object that thread 5

later reads. However, there is no required ordering to these writes, and thread

5’s read could return either value written, or even some corrupt combination

of the two. Figure 4.10(b) illustrates the common situation of a shared mem-

ory object protected by mutexes. This protection eliminates the potential for

a corrupt data read, but does not establish a required ordering for the writes.

The writes do not depend on one another, so they can be executed in any or-

87

1

2 3

4

obj1obj2

obj4

obj3

5

(a) Unprotected Race

1

2 3

4

5obj1 6

obj2

7

8

9

obj3 obj4

(b) Protected
Race

1

23

6

4 obj1

5

8

9

7

obj3

obj2obj4

(c) Ordered
Access

Figure 4.10. Identifying Race Conditions via Structure

der. This nondeterminism may not be an error, depending on the applica-

tion. Finally, Figure 4.10(c) illustrates shared access to a protected memory

object that does not have a race condition. Because the writes are logically or-

dered through dependence relations, the contents of the memory object are

deterministic. Thus, the final read is both safe and deterministic despite be-

ing unsynchronized. Because these graphs represent the logical structure of

the program, a dangerous potential race condition (4.10(a)) can be identified

even if no error is apparent at run time.

It is worth emphasizing that not all race conditions, defined as timing-de-

pendent logic, are errors. For example, the correctnessof the qt_loop_balance()

implementation fromFigure4.4doesnot relyupona specificorderingof thread

completions.

88

4.4.2 Graph-based Problem Isolation

The useful portions of the graph can be isolated by presenting only a sub-

graph of the total program structure containing just the areas of interest. For

example, the graph can be reduced to the subgraph of only the nodes that are

connected to a given thread or memory object. Because the graphs are di-

rected graphs, it is possible to find the nearest common ancestor of two or

more nodes and present only the subgraph of the paths from those nodes to

their common ancestor. Figure 4.11 illustrates such graphs. Figure 4.11(a) is

a graph of a short application with an intentional race condition in it. Fig-

ure 4.11(b) narrows the graph of the application to only the nodes that have

a distance of four or less from the memory object with the race condition—

the nodes that are directly connected to the memory object are highlighted.

Figure 4.11(c) presents the graph of the threads that touch thememory object

of interest and the ancestral tree up through the nearest common ancestor of

those threads. Both of these presentation modes are useful for visually locat-

ing potential structural problems.

The other aspect of debugging is identifying the problems in a large graph

algorithmically so that theycanbe isolatedanddisplayed. This iswhereheuris-

tics are useful, similar to standard compiler warnings. One common struc-

turally-detectable race condition is where a write occurs to an object that has

not necessarily been read yet. A race condition also occurs when there are two

writes to a memory location that do not depend on each other, which can be

identified algorithmically. When a deadlock occurs, of course, the affected

threads and memory operations can be identified, isolated, and displayed.

89

(a) Full Graph

obj1

296

obj2

425

obj3

361

obj4

obj5

423

obj6

362363 364 365 366 367 368 369 370 371 372 373 374375 376 377 378 379 380 381 382 383 384 386 387 389 392 394 396 398 400 403

491427 428430 432 434 435 438 440 442 443 446 448 450 452 454 456 458 459 462 464 466 468 470 472 474 477 478 480 482 483 486 488

295

297 298 300 302 304 305308 310 312 314 316 318 320 322 324 326 328 329 332 334 336 337 340 342 344 345 349 350 352 354 356 357

(b) Distance of Four

obj1

425

obj2

423

obj3

375 376 377 378 379 380 381 382 383 384 386 387389 392 394 396 398 400 363 364 365 366 367 368 369 370 371 372 373 374 362 403

361

(c) Nearest Common Ancestor

Figure 4.11. Race Condition Isolation: Presentation Options

Identifying potential deadlocks is also possible to do algorithmically, as has

been discussed.

4.5 Parallel Computation/Communication Models

One of the particularly interesting aspects of this kind of multiprocessing

analysis is that the programming scheme employed by the parallel algorithm

being studied can be observed and understood without in-depth knowledge

of the program itself. The computation model and communication patterns

used by the application impact the performance characteristics of the appli-

cation, and provide an indication of likely performance trends. The computa-

tionmodel is closely associatedwith the communicationpattern andprovides

insight intopotential optimizations andproblems that can assist in debugging

andmaintenance.

90

For example, graphs in Figure 4.5 were generated from the HPCCG bench-

mark, which was modified to use qthreads in Chapter 3. Because of the naïve

parallelizationapproachused,HPCCGexhibits adistinctlyphase-orientedpro-

gramming model that is comparable to the Bulk Synchronous Parallel [160]

and PRAM [60] computation models. In each parallelized segment of the ap-

plication, threads are created, execute, and then communicate and collect re-

sults, largely in the formof synchronization operations. The structure of these

computational segments canbe viewedmore closely in Figure 4.4, which illus-

trates a single instance of the qthread-based parallel loop construction used

in HPCCG.

The bucketsort implementation, graphed in Figure 4.3, is an example of

a distinctly different parallel computation model. While the program is ob-

viously composed of three distinct phases, without memory references, the

memory model cannot be determined. The graph in Figure 4.3 was produced

with a Dtrace-generated event description, which could not detect memory

references. Figure 4.12 is a graph of 10% of the same bucket sort program, but

traced with SST in order to include memory references. Predictably, it is cen-

tered around the large array that it is sorting, depicted as the large box near

the top of the graph. This behavior makes it similar in some ways to a Linda-

based application [4]. The same would be true of most parallel applications

centered around a single data structure, though some data structures can be

graphed more usefully, such as a hash table, as illustrated in Figure 4.8 and

discussed in Section 4.3.4.

Flow-based applications [121] have another distinct structure. This struc-

ture is illustrated in Figure 4.13, which is a graph of a simple parallel stream

91

obj1
(1280000 bytes)

Figure 4.12. Structure of 10% of Cilk Bucketsort, Including Memory
References

processor. This program spawns four threads. The first thread generates ran-

domnumbers and puts them into a circular buffer. The second thread fetches

numbers from that circular buffer and feeds only the odd numbers into a sec-

ond circular buffer. The third thread fetches numbers from the second cir-

cular buffer, sorts them, and then puts them into a third circular buffer. The

fourth thread fetches numbers out of the third circular buffer and prints the

unique ones. All three circular buffers have a capacity of three. Note that,

rather than rely on a large set of shared objects that multiple threads can ac-

cess, each shared memory object is only accessed by two threads. This leads

to a distinctive visual pattern. The resulting thread structure graph has some

distinct similarities to the corresponding FBP diagram.

92

2

361317

71

obj1

obj2

4

7

14

54

obj3

obj7

8

9

11

obj4

obj5

obj6

obj12

15

16

obj8

obj9

obj10

obj11

obj15

25

27

29

30

31

obj13

obj14

obj18

34

35

36

obj16

obj17

43

45

obj19

49

50

obj20

obj21

obj22

obj23

obj2455

56

57

58

59

obj25

obj26

obj27

67

68

69

obj28

72

5

18

10

12

24

33

19

20

21

22

23

37

26

28

32

42

48

38

39

40

44

46

51

52

53

60

66

61

62

63

64

Figure 4.13. Structure of a Flow-based Application

93

4.6 Conclusion

Analyzing parallel applications continues to be an area of great interest as

parallel runtime environments become more powerful, complex, and unpre-

dictable. The work presented in this chapter provides a powerful tool to assist

in understanding the behavior of large-scale threaded applications in light-

weight threading environments. This allows application structure to be com-

pared across multiple threading environments and assists in quickly identify-

ing hard-to-reproduce logical problems. Most importantly, this work allows

the memory use patterns and thread structure to be combined in a single vi-

sualization tool, enabling not only correctness analysis but providing the in-

formation necessary to plan thread/data partitioning schemes.

94

CHAPTER 5

EXPLOITINGMACHINE TOPOLOGYWITH ADAPTIVE DISTRIBUTED

DATASTRUCTURES

5.1 Introduction

The previous chapter discussed application structure, both how it can be

used to identify parallel programming errors and how it can be used to under-

stand an application’s behavior. Because shared memory parallel machines

have non-uniform memory access latencies with a variety of topologies, ap-

plication structure and how itmaps tomemory topology directly impacts par-

allel performance. This chapter explores this relationship within the context

of commonly used data structures. Data structures provide a clear illustration

of the connection between structure and performance in parallel systems. In

particular, data structures’ internal structure is defined by data placement.

Three new data structures—a distributed memory pool, a distributed ar-

ray, and a distributed queue—that adapt tomemory topologies are presented

along with benchmark results demonstrating their efficiency. The distributed

memory pool proves to be up to 155 times faster than the standard malloc()

implementation while providing location-aware memory allocation. The dis-

tributedarray supports strong scaling, providing a 31.2 timesperformance im-

provement with 32 ccNUMA nodes while iterating over the array. At scale, the

95

distributed queue demonstrates up to a 47 times improvement over a strictly-

ordered lock-free queue, and an 8.3 times improvement over the performance

of state-of-the-art concurrent queues on a large ccNUMA system.

The benchmark results presented in this chapter to demonstrate the scala-

bility of these new data structures are gathered from several different parallel

architectures with a variety of memory topologies: a four-core Xeon worksta-

tion, a 32-core Niagara 2 server, and a 48-node SGI Altix. By comparing op-

erations-per-second and effective bandwidth, the benchmarks also demon-

strate the importance of choosing appropriate system-specific design param-

eters, such asmemorydistributionpattern and segment size. Distributeddata

structures that take advantage of locality and adapt to system topology solve

several of the basic problems of increased parallelism in complex systems.

The primary challenge of implementing portable distributed data struc-

tures is supportingmultiple systems and topologies. The qthread library sup-

ports many different operating systems and hardware architectures and pro-

vides a consistent interface to their unique methods of discovering machine

topology and specifying the location of memory and computation. Fully ex-

ploiting vastly different parallel architectures requires adapting to the avail-

able hardware features and choosing data distribution patterns and location

assignment mechanisms that suit the system topology. The distributed data

structures presented use the locality information provided by the qthread li-

brary to select distribution strategies and to optimize communication pat-

terns. They also rely on the qthread library to provide access to fast atomic

synchronization operations.

96

Memory Memory

MemoryMemory

MemoryMemory

MemoryMemory

MemoryMemory

MemoryMemory

MemoryMemory

MemoryMemory

MemoryMemory

MemoryMemory

Memory

Memory Memory

Memory

C
o
re

C
o
re

C
o
re

C
o
re C

o
re

Memory

C

a

c

h

e

C
o
re

C
o
re

C
o
re

C
o
re

C
o
re

C
o
re

C
o
re

C
o
re

Memory

C

a

c

h

e

2 Chips x 8 Cores x 8 Threads

(c) Niagara

Memory

Cache Cache

1 Node x 4 Cores

(a) Xeon
A

B

A: 16 Nodes x 2 CPUs

B: 8 Nodes x 2 CPUs

(b) Altix

C
o
re

C
o
re

C
o
re

Cache

CPU

CPU

CPU

Cache

CPU

Cache

Cache

CPU

CPU

Cache

CPU

CPU

CPU

CacheCache

CPU

Cache

CPUCPU

Cache

Cache

CacheCache

Cache

Cache

CPU

CPU

CPU

Cache

CPU

Cache

CPU

Cache

CPUCPU

Cache

Cache

Cache

Cache

CPU

Cache

CPU

Cache

CPU

CPU

Cache

CPU
Cache Cache

Core

CacheCache

CPU

Cache

CPU

CPU

CPU

CPUCPU

Cache

Cache

Cache

CPU

Cache

Cache

CPU

Cache

CPU

CPU

Core

Cache

CPU

Cache

CPU

CPUCPU

Core

Cache

Cache

CPU

Cache

Cache

CPU

Core

CPU

CPUCPU

Cache

CPU

Cache

CPUCPU

Cache

Cache

CacheCache

Cache

CPU

CPU

Figure 5.1: System Topologies

5.2 Parallel Architectures

Several different systemswith dramatically different topologies are used to

evaluate the distributed data structures in order to demonstrate using topol-

ogy to informruntimedecisions. These systems includeadual-processordual-

core Intel Xeon 5150workstation, a 48-processor SGI Altix 3700 ccNUMASMP,

and a dual-processor 16-core Sun SPARC Enterprise T5240 server. These ma-

chineswere selected todemonstrate threedifferent typesof parallel systems: a

commondevelopmentworkstation, a large ccNUMAsystemwith awide range

of memory latencies and a complex topology, and a massively multithreaded

high-throughput chip architecture. The topology of each of thesemachines is

illustrated in Figure 5.1.

97

The Intel Xeonworkstation, Figure 5.1(a), is dual-processor and dual-core,

typical of commodity development workstations. Each processor has its own

cache but shares the 1066 MHz front-side bus to memory. The system runs

Linux, whichprovides the libnuma [96] interface for querying system topology

and assigning location to threads andmemory blocks. Because the processors

share the front-side bus tomemory, the libnuma library describes this system

as a single node with four processors. This lack of detail is unfortunate, since

the cache-sharing is an important aspect of the memory hierarchy. However,

ignoring cache coherency issues, the memory latency is roughly the same for

both processors.

The Altix ccNUMA SMP, Figure 5.1(b), is based on the Intel Itanium 2 ar-

chitecture. The nodes are connected via NUMAlink 4 with dual 3.2 GB/s uni-

directional links. Each of its 24 processing nodes has two CPUs and a large

amount of local RAM. The machine is divided into two components: a 16-

node component (A) and an 8-node component (B). Component A consists of

four clusters of four dual-processor nodes, for a total of 32 processors. Com-

ponent B’s nodes are arranged in a dual-plane fat-tree. The two components

are connected by additional dual unidirectional links, though the node-pairs

in component B are not both connected to the same set of nodes in compo-

nent A and some of the links between the two components are asymmetric.

This systemalso runs Linux, and provides the libnuma interface. The libnuma

library describes this system as 24 nodes, each with two CPUs.

The Niagara 2 server, Figure 5.1(c), exemplifies a recent direction in multi-

processor systems targeted at the high-throughput server market. It has two

processors, each with eight cores. Each core can support up to eight concur-

98

rent hardware threads, for a total of 128 concurrent hardware threads. Each

core has its own bank in the L2 cache, but any bank in the cache of a single

processor can be accessed by any other core on the same processor. Each pair

of cache banks shares a dual channel FB-DIMMmemory controller. This sys-

tem runs Solaris 10, 5/08 Release, which provides the liblgrp [167] interface

for querying system topology and assigning location to threads and memory

blocks. The liblgrp interface presents a coarse hierarchical view of the system.

The smallest granularity of topological detail provided by this library is a sin-

gle “locality-group”, which may contain multiple cores and multiple threads.

Though there is no inherent limitation to the granularity of a “locality-group”,

in currentNiagara 2 systems the smallest locality group refers to an entire pro-

cessor.

In the absence of a direct representation of topology, such as liblgrp pro-

vides, topology can be inferred frommeasurements of distance or latency be-

tween components. However, distance or latency cannot be reliably deter-

mined by measuring the access time of addresses throughout memory space.

Ignoring issues of the virtual memory system remapping pages, the memory

access latency can vary every time it is measured due to the interference of

prefetchers, cache coherency protocols, and other programs in the system,

among other things. The topology libraries used by qthreads—Linux’s lib-

numaandSolaris’s liblgrp—provide access to stable, albeit unspecific, latency

measurements. The libnuma measurement of “distance” between nodes is a

unit-less number generated by the Linux kernel from system-specific sources.

All inter-node distances are normalized to the speed of “local”memory, which

is defined to be 10 units away. Liblgrp provides a latency measurement in

99

unspecified machine-specific units that is not guaranteed to represent actual

latency. Conveniently, liblgrp also provides a hierarchical representation of

the system to directly establish topology. The qthread library uses these in-

terfaces to establish, for each location, an ordered proximity list of locations

and access to a stable measurement of distance between locations. However,

to avoid imprecision, the qthread library uses an untranslated measurement

from whichever system-specific library is available. When a locality interface

is not available, all locations are assumed to be equidistant.

5.3 Distributed Data Structures

Threenewdata structuredesignsdemonstrate thebenefitsof adaptingpro-

grammatic structure tomachine topology: apool, anarray, andaqueue. These

data structure types are cornerstones of basic parallel application design, and

are used as basic building blocks in awide range of high-performance applica-

tions. The key design point of these data structures is the way that they adapt

to the topology of the system in use. The API of the data structures is summa-

rized in Figure 5.2.

5.3.1 Distributed Memory Pool

Memory allocation is a frequently overlooked detail of large programs that

can significantly impact performance. Standard memory allocation libraries

are typically designed for general-purpose allocation in single-threaded ap-

plications, balancing allocation speed with the need to limit fragmentation,

without concern for locality. The libnuma numa_alloc() function provides a

way to allocate memory in a specific location, but at a heavy cost: it is de-

100

Memory Pools Arrays Queues

qpool_create(size) Create a
pool of size-byte objects

qpool_create_aligned(sz,align)
Create a pool of sz-byte objects,
aligned to align byte boundaries

qpool_alloc(pool) Fetch an
object from the pool

qpool_free(pool, addr) Return
addr to the pool

qpool_destroy(pool) Deallocate
pool and all of its memory

qarray_create(cnt,size)
Allocate an array of cnt elements,
each at least size bytes, and
distribute its memory

qarray_create_tight(cnt,size)
Allocate an array of cnt elements,
each exactly size bytes, and
distribute its memory

qarray_elem(array,n) Locate
the n’th element in array

qarray_elem_migrate(array,n)
Locate the n’th element in array,
migrates thread near to that
element

qarray_iter_loop(array,f,arg)
Execute the function f on each
element in array in parallel

qarray_destroy(array)
Deallocate array

{qlf|qd}queue_create()
Allocate a queue

{qlf|qd}queue_enqueue(q, elem)
Append the element elem to
the q queue

{qlf|qd}queue_dequeue(queue)
Get the head of the queue

{qlf|qd}queue_empty(queue)
Check whether queue contains
any elements

{qlf|qd}queue_destroy(queue)
Deallocate queue

A qlfqueue is a lock-free queue,
and a qdqueue is a distributed
queue.

Figure 5.2. Distributed Data Structure API (Abridged)

signed to allocatemultiple pages ofmemory at a time, rather than as a general

purpose allocator. Liblgrp allows any allocatedmemory page to be assigned a

location via memadvise(), but this interface is also restricted to specifying the

location of entire memory pages.

5.3.1.1 Design

A simple mutex-protected memory pool could be used with numa_alloc()

or memadvise() to provide thread-safe access to small blocks of location-spe-

cificmemory, however the overhead ofmutexes canbe significant. Oneway of

minimizing mutex overhead is to use a lock-free algorithm—where all states

of the object are consistent, state transitions are made via atomic hardware

operations, and forward progress can always be made. The qthread memory

pool, qpool, is primarily implemented as a set of location-specific lock-free

101

stacks, using qthread’s qthread_cas() atomic compare-and-swap operation.

Using separate pools for each location in the systemprovides fast access to lo-

cation-specificmemory, but can exacerbate problems of imbalancedmemory

allocationpatterns. Memorymaybe allocated in one location anddeallocated

in another, causingmemory to be “misplaced,” and therebywasted. Thus, it is

important tobeable to locate the “homepool”of eachallocatedblockofmem-

ory so that it can be returned there when deallocated. Topology information

can also be used to pull memory blocks preferentially from nearby memory

pools rather than either pulling from distant pools or allocating newmemory.

Before a qpool can be used, it must be created and initialized with a call to

qpool_create(). Thereafter, elements can be fetched from the pool using the

qpool_alloc() function and returned to the pool using the qpool_free() func-

tion. A pool may be destroyed using the qpool_destroy() function. Internally,

each allocation operation is handled by the pool specific to the location of the

requesting thread.

Memory exhaustion is of particular concernwhen allocating node-specific

memory, because each node has only a portion of the overall memory. There

are two ways of handling node-specific memory exhaustion when allocating

memory: fail to allocatememory, or attempt to satisfy the request by violating

the location requirement. The qpool takes the latter approach, and fails to

allocatememoryonly ifmemory cannot be allocatedonanynode. Attempting

to create pools of extremely largememory objects will also fail; when creating

the pool, blocks of memory are allocated for each shepherd. If this memory

cannot be allocated, the pool creation fails, and the qpool_create() function

returns a null pointer.

102

When memory must be allocated for the pool’s back end, it is allocated in

large blocks and portioned out in chunks of the size specified when the pool

was created. Memory that is freed is pushed onto a location-specific re-use

stack. When memory is requested, this stack is checked first. If the re-use

stack is empty, memory is pulled from the local large allocated block. When

this block is exhausted, the re-use stacks of the closest neighboring locations

are checked, in randomorder. If none of themhavememory, a new large block

of memory is allocated from the local node’s memory, and added to a list of

allocated blocks. If allocation fails, the re-use stacks of all pools are checked,

in order of their distance from the requester. Finally, all pools are checked for

large allocated blocks. If no memory can be found, the allocation request will

return a null pointer.

5.3.1.2 Benchmark

To illustrate the scalability of theqpool’s design, abenchmarkwasdesigned

that usesmultiple threads to allocate andwrite to 100million separate 44-byte

memory blocks (the size of a pthread_mutex_t on some systems) before deal-

locating them. Three allocationmethods are compared on the Linux systems:

theqpool lock-freememorypool, a similar concurrentpool usingpthreadmu-

texes instead of atomic operations, and standard glibcmalloc [65]. Solaris also

provides a multithreaded malloc library, mtmalloc, which is also tested. Each

set of allocation and deallocation operations is performed ten times on each

of the three test systems.

103

10
6

10
7

10
8

 1 2 4O
p

e
ra

ti
o

n
s
 p

e
r

s
e

c
o

n
d

Number of Threads
qpool_alloc()

malloc()
mutex pool

(a) Xeon Allocation

10
6

10
7

10
8

 1 2 4 8 16 32O
p

e
ra

ti
o

n
s
 p

e
r

s
e

c
o

n
d

Number of Threads
qpool_alloc()

malloc()
mutex pool

(b) Altix Allocation

10
4

10
5

10
6

10
7

10
8

10
9

 1 2 4 8 16 32 64 128O
p

e
ra

ti
o

n
s
 p

e
r

s
e

c
o

n
d

Number of Threads
qpool_alloc()

malloc()
mutex pool

mtmalloc

(c) Niagara 2 Allocation

10
6

10
7

10
8

 1 2 4O
p

e
ra

ti
o

n
s
 p

e
r

s
e

c
o

n
d

Number of Threads
qpool_free()

free()
mutex pool

(d) Xeon Deallocation

10
6

10
7

10
8

10
9

 1 2 4 8 16 32O
p

e
ra

ti
o

n
s
 p

e
r

s
e

c
o

n
d

Number of Threads
qpool_free()

free()
mutex pool

(e) Altix Deallocation

10
5

10
6

10
7

10
8

10
9

 1 2 4 8 16 32 64 128O
p

e
ra

ti
o

n
s
 p

e
r

s
e

c
o

n
d

Number of Threads
qpool_free()

free()
mutex pool

mtfree

(f) Niagara 2 Deallocation

Figure 5.3: Memory Allocation/Deallocation with 100 Million Elements
These graphs compare the allocations and deallocations per second of multiple threads allo-

cating 44-byte blocks of memory. Each block is written to, ensuring that it has been allocated.

Freeing memory with standard malloc is extremely fast on Linux systems, but qpools are up to

155 times faster at scale on the Niagara 2. Mutexes have a high cost on Linux.

5.3.1.3 Results

Thegraphs inFigure 5.3 compare theallocations anddeallocationsper sec-

ond of the benchmark application. Tomake the different allocation and deal-

location methods easier to differentiate, the y-axis of the graphs do not go to

zero.

As the number of concurrent threads increases, particularly beyond four

threads, the qpool outpaces glibc malloc. The mutex-based location-specific

memory pools suffer from slow mutex operations on Linux. The glibc mal-

loc implementation, while not returning location-specific memory, achieves

a great deal of speed with its adaptive arena allocation. It avoids contention

by creating additional allocation arenas.

104

The Solaris malloc library (used in Figures 5.3(c) and 5.3(f)), designed for

serial applications, is uniformly slow. The Solaris multithreaded malloc im-

plementation (mtmalloc)provides somewhatbetterperformance for relatively

low numbers of threads, but does not appear to be designed to support more

than sixteen threads at a time. Unfortunately, mtmalloc has a high memory

cost, allocating only blocks of memory in sizes that are powers of two.

5.3.2 Distributed Array

Distributed arrays are commonly used as a central data structure in scien-

tific computing, particularly as matrices or to efficiently store large amounts

of similar data. In some cases, such as Co-Array Fortran, the distributed array

is the fundamental metaphor for and arbiter of parallel operation.

5.3.2.1 Design

The design of the qthread distributed array, or “qarray,” is a basic “blocked”

or “tiled” array design: the array is broken into segments that are placed in

different locations around the system. This section examines three aspects of

this distributed array design: distribution pattern, segment size, and element

size.

The qarray distributes its memory when it is created, via the

qarray_create() function. Once it has been created, elements within

the array can be accessed with either an accessor function, qarray_elem(), or

using pointermath within a segment. There is an alternate accessor function,

qarray_elem_migrate(), that also migrates the caller to be near the specified

array element. The qarray provides an efficient mechanism for iterating

105

over the array: the qarray_iter_loop() function. This mechanism calls a

user-specified function to process ranges of the array, and ensures that the

function will be executed close to the range that it processes. Qarrays are

deallocated with the qarray_destroy() function.

Thedistributionpatternof array segments, and themethodof determining

storage location, necessarily impact performance. One simple distribution

mechanism is to place each segment according to its order in the array, via

a hash or other mathematical mapping. This has the virtues of simplicity and

uniformity, and avoids accessing memory to locate segments. This method

is, however, fixed and unadaptable, and would be unacceptable if relocating

array segments was necessary. Alternately, the location of each segment can

be stored with the segment. This requires accessing the segment to discover

its location, but enables both a wider range of distribution patterns and relo-

cating segments at runtime. Several options are considered:

Static Hash uses the segment order number, modulo the number of shep-

herds, to determine the location of the segment.

Dist Reg Stripes stores segment locationwith the segment, butdistributesmem-

ory similarly to the Static Hash.

Dist Rand stores segment locationwith the segmentanddistributes segments

randomly.

Dist Reg Fields stores segment locationwith the segmentandclusters sequen-

tial segments onto the same shepherd, distributing segments evenly.

Serial Iteration is not a distribution pattern, but is used to show the relation-

ship of the distributed iteration bandwidth to the bandwidth achieved

106

with a typical non-distributed array and iteration loop, optimized by the

compiler.

5.3.2.2 Benchmarks

Two benchmarks were designed to explore the performance characteris-

tics of the qarray distributed arrays. The first benchmark creates a 100-million

element qarray of either 10,000-byte elements, 40-byte elements, or 8-byte el-

ements, using each of the previously described distributionmethods. The ele-

ments are all initialized. Thebenchmark thenuses theqarrayparallel iteration

function to read the values of all of those array elements. The size of the array

divided by the time required to test each value represents the effective mem-

ory bandwidth achieved. Several versions of this benchmark were compiled,

each using a hardcoded number of pages for the internal array segment size.

The secondbenchmark similarlyuses all of theavailabledistributionmeth-

ods in turn, but rather than using fixed sizes, uses arbitrary size elements that

are either “packed” tightly, or are allowed to have their size rounded to the

next-highest multiple of eight.

5.3.2.3 Results

Figure5.4presents the results of thefirst benchmark, using8-byte elements,

treated as double-precision floating point numbers. The benchmark was run

ten times on each system. The results presented represent the average band-

width achieved.

It isworthnoting that theparallel iteration technique scaleswell in all three

systems, but the maximum performance depends on the memory configura-

107

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 4

B
a

n
d

w
id

th
 (

M
B

/s
)

Number of Threads
Static Hash

Dist Reg Stripes
Dist Rand

Dist Reg Fields
Serial Iteration

(a) Xeon

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 1 2 4 8 16 32

B
a

n
d

w
id

th
 (

M
B

/s
)

Number of Threads
Static Hash

Dist Reg Stripes
Dist Rand

Dist Reg Fields
Serial Iteration

(b) Altix

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 1 2 4 8 16 32 64 128

B
a

n
d

w
id

th
 (

M
B

/s
)

Number of Threads
Static Hash

Dist Reg Stripes
Dist Rand

Dist Reg Fields
Serial Iteration

(c) Niagara 2

Figure 5.4: Distribution Pattern Scaling
These graphs compare the memory bandwidth achieved by multiple threads iterating over ar-

rays of 100 million double-precision floating point numbers, reading their values. Multiple

distribution patterns are compared to serial execution. Maximum performance depends on

memory configuration, but in general, some variety of striping provides the best performance.

tion. On the Niagara 2 server, iteration with 128 threads operated 86.2 times

faster than serial iteration. On the Altix machine, iteration with 32 nodes op-

erated 31.2 times faster than serial iteration. The Xeon workstation peaked

at 2.1 times faster than serial operation, likely because there are only two pro-

cessors, and thus twomemory controllers, which compete for a relatively low-

bandwidth memory bus.

On both the Altix and the Xeon, the static hash was the fastest distribu-

tion pattern. This is almost certainly because accessing remote memory to

determine its location is slow and can cause incorrect memory blocks to be

prefetched. Because their cache hierarchy is characteristic of most commod-

ity systems, the static hash is the default distribution method for all systems

other than the Niagara 2. The Niagara 2 server benefits from fetching “incor-

rect” blocks because of its cache sharing. Though a fetched block may be

the incorrect one for one thread, it is likely to be useful for another nearby

thread. The Dist Reg Stripes distribution pattern leverages the Niagara 2’s

108

shared cache by interleaving segments and thereby clustering the working set

of memory, resulting in the best performance.

Distributed array performance also depends on the granularity of distri-

bution, or “segment size.” Most locality-aware memory allocation methods

operate on memory blocks no smaller than a page, requiring that all memory

within a page be in the same place, thereby defining the minimum segment

size. While it is certainly possible to create a fine-grained distribution pattern

by striping array elements acrossmultiple pages such that each page contains

non-consecutive elements, this prevents efficient loop unrolling when iterat-

ing over sets of data. Because theminimumsegment size is a page on all of the

supported systems, only large arrays can be efficiently distributed. The pre-

vious benchmark was recompiled with several different segment size options

hardcoded into the array implementation.

Figure 5.5 illustrates the impact of segment size on bandwidth use and

scaling. When iterating through a qarray in parallel, large segment sizes al-

low the machine to take advantage of cache features such as prefetching. At

the same time, large segment sizes can also create load imbalances and limit

efficient fine-grained parallel operation within those segments. The distribu-

tionmethod has a significant impact on the optimal segment size. The perfor-

mance of static hash across the range of segment sizes varied less than 12%on

the Niagara 2 server, while the best performing segment size for the Dist Reg

Fields distribution provides a 220% improvement over the worst performing

segment size. The static hash distribution provided the best small segment

sizeperformanceof thedistributionmethods tested. Otherdistributionmeth-

ods need larger segments to fully amortize the cost of incorrect prefetching. In

109

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 4 8 16 32 64 128 256

B
a

n
d

w
id

th
 (

M
B

/s
)

Number of Pages
Static Hash

Dist Reg Stripes
Dist Rand

Dist Reg Fields
Serial Iteration

(a) 4 threads, Xeon

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 1 2 4 8 16 32 64 128 256

B
a

n
d

w
id

th
 (

M
B

/s
)

Number of Pages
Static Hash

Dist Reg Stripes
Dist Rand

Dist Reg Fields
Serial Iteration

(b) 32 threads, Altix

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 1 2 4 8 16 32 64 128 256

B
a

n
d

w
id

th
 (

M
B

/s
)

Number of Pages
Static Hash

Dist Reg Stripes
Dist Rand

Dist Reg Fields
Serial Iteration

(c) 128 threads, Niagara 2

Figure 5.5: Segment Size’s Impact on Scaling
These graphs compare the bandwidth achieved by using multiple threads to iterate over arrays

of 100 million double-precision floating point numbers, reading their values. Multiple distri-

bution patterns and segment sizes are compared to naïve serial execution. Each architecture

and distribution pattern has its own optimal segment size, but 16 pages is a good default.

most cases, a segment size of 16 pages is close to optimal, but slightly better

performance can be had on a per-systemper-distribution-method basis. This

information is hard-coded into theqarray implementation. Shouldnewarchi-

tectures have different performance characteristics, that information can also

be added.

The size and alignment of elements within an array can be critical to tak-

ing full advantage of the cache as well as avoiding unnecessary bus traffic.

Caches almost always load aligned data from memory. Accessing unaligned

data can result in multiple load instructions, slow compositing instructions,

and even crashes on some architectures. For example, Figure 5.6(c) shows

that the penalty for using unaligned data can be as high as a 50% reduction

in bandwidth. The spikes and variances in bandwidth shown are consistent

over multiple tests, not the result of temporary issues. Avoiding these situa-

tions and aligning data when beneficial is a task that is often left to the com-

piler to handle, particularly for pre-allocated global and stack-based variables.

110

Compilers often pad data structures to ensure that they can be easily aligned

in arrays. Since a qarray performs layout at runtime rather than at compile-

time, data alignment must be handled manually.

Figure 5.6 presents average results from the second benchmark, which

demonstrates the impact of element size and alignment on performance.

These graphs compare the memory bandwidth achieved while reading and

writing data to arrays with a variety of element sizes. Specifically, an “un-

aligned” array whose elements are not padded is compared to one that en-

forces an 8-byte alignment by adding padding to round element size to the

next-largest multiple of eight.

On all three systems, manually aligning data has a clear benefit for small

element sizes, but has less of an impact on performance when using large el-

ements. This is likely because unaligned layout is more condensed, and that

benefit outweighs the penalty for unaligned access beyond a certain size ele-

ment. Large elements can also amortize the alignment penalties, depending

on their internal structure. This information is also coded into the qarray im-

plementation,which automatically rounds element sizes under 64bytes to the

next-largestmultiple of eight. This padding can be prevented, if compact data

layout is desired, by using the qarray_create_tight() function when creating

the array.

5.3.3 Distributed Queue

Queueshavea spectrumofuses inparallel applications, andoptimalqueue

design depends heavily on the intended use. One common use for a queue is

as a buffer between two threads. In that case, absolute ordering is required,

111

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4 8 16 32 64 128 256 512

B
a

n
d

w
id

th
 (

M
B

/s
)

Element Size (bytes)
Aligned Write 1GB

Unaligned Write 1GB

(a) 4 threads, Writing, Xeon

 0

 2000

 4000

 6000

 8000

 10000

 12000

 4 8 16 32 64 128 256 512

B
a

n
d

w
id

th
 (

M
B

/s
)

Element Size (bytes)
Aligned Write 1GB

Unaligned Write 1GB

(b) 32 threads, Writing, Altix

 0

 2000

 4000

 6000

 8000

 10000

 12000

 4 8 16 32 64 128 256 512

B
a

n
d

w
id

th
 (

M
B

/s
)

Element Size (bytes)
Aligned Write 1GB

Unaligned Write 1GB

(c) 128 threads, Writing,
Niagara 2

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 4 8 16 32 64 128 256 512

B
a

n
d

w
id

th
 (

M
B

/s
)

Element Size (bytes)
Aligned Read 1GB

Unaligned Read 1GB

(d) 4 threads, Reading, Xeon

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 4 8 16 32 64 128 256 512

B
a

n
d

w
id

th
 (

M
B

/s
)

Element Size (bytes)
Aligned Read 1GB

Unaligned Read 1GB

(e) 32 threads, Reading, Altix

 0

 2000

 4000

 6000

 8000

 10000

 12000

 4 8 16 32 64 128 256 512

B
a

n
d

w
id

th
 (

M
B

/s
)

Element Size (bytes)
Aligned Read 1GB

Unaligned Read 1GB

(f) 128 threads, Reading,
Niagara 2

Figure 5.6: Element Size/Alignment Scaling
These graphs compare the memory bandwidth achieved by multiple threads iterating over one

million element arrays using both 8-byte aligned data and unaligned compact data of various

element sizes. Alignment provides a speed improvement for small element sizes, but is less im-

portant for larger elements. By default, the qarray rounds element sizes below 64 bytes to the

next-highest multiple of eight.

but because there is only one producer and one consumer, assumptions may

be made in the implementation to provide additional speed. For example,

there will be low contention for the head and tail of the queue, so there need

only be one of each. Queues are also used for distributing work among mul-

tiple threads, organizing multiple producers and multiple consumers. In that

situation, the guarantees required of a simpler queue—such as absolute tem-

poral ordering of all items added to the queue—may be relaxed in order to

decouple portions of the queue and thereby speed operation.

112

Locality has greater importance for the latter queue use. A locality-aware

distributed queue prefers consuming queue elements from nearby producers

over consuming the oldest elements in the overall queue. This is a useful pol-

icy for the implementation ofwork-stealing task queues, for example, because

it assists in preserving locality of reference between tasks by preferentially ex-

ecuting them near where they were created.

5.3.3.1 Design

The qthread library provides two types of queue. The queue that guar-

antees global first-in-first-out ordering is a lock-free queue called “qlfqueue,”

basedonMichael andScott’s queue [117]. Thedistributedqueue, or “qdqueue,”

inspired by the “stochastic distributed queue” by Johnson [91] and the push-

based queue by Arpaci-Dusseau [11], only guarantees end-to-end ordering.

The two queues provide nearly identical interfaces, with different prefixes.

New lock-free queues are created with the qlfqueue_create() function and

destroyed with the qlfqueue_destroy() function. New distributed queues are

created with qdqueue_create() and destroyed with qdqueue_destroy(). Ele-

mentsmaybequeuedwith the qlfqueue_enqueue()or qdqueue_enqueue() func-

tions, and dequeued with the qlfqueue_dequeue() or qdqueue_dequeue() func-

tions. The queuesmay also be quickly checked for queued elements using the

qlfqueue_empty()/qdqueue_empty() functions.

The core task of any end-to-end ordered distributed queue is matching

consumers to producers. A centralized matchmaker that tracks the location

of all queued elements is a simple approach, but one that creates a bottle-

neck both logically and in communication patterns. This design can bemod-

113

ified to distribute matchmaking via hierarchical matchmaking deputies that

are responsible for clusters of nodes, and elevate match requests that cannot

be satisfied locally to the global matchmaker. This distribution reduces the

contention of consumers, but increases the work of producers without ad-

dressing their bottleneck issues. An alternative approach is one known as a

“stochastic distributed queue” [91], where consumers repeatedly probe pro-

ducer queues until a non-empty queue is found. This technique is particularly

efficient when the queues are rarely empty. However, when consumers are

frequently in search of non-empty queues, the stochastic approach requires

a great deal of work for consumers and creates multiple bottlenecks as each

consumer polls the entire set of producers. This work can be reduced if con-

sumers andproducers cooperate—via advertisements, somewhat like apush-

based queue [11]—without significantly impacting the common-case opera-

tions when empty queues are rare.

Theqdqueueuses a separateqlfqueue for each location in the system. Each

location also maintains a list of “advertisements” received, sorted by distance

to the advertiser, and a record of the last consumed element’s source. New el-

ements are enqueued in the local queue. If the queue was empty, any waiting

local consumers are notified. If the queue was not empty, the enqueuer posts

“advertisements” to nearby queues. An advertisement informs remote con-

sumers that there is data available in this location. The set of “neighbor” loca-

tions to receive advertisements is determined at setup time, based on topol-

ogy. Thus, the maximum work of a producer is fixed, independent of the to-

tal size of the system. A fast producer can avoid resending advertisements by

tagging them with a monotonically increasing counter and tracking whether

114

advertisements have been consumed. If the last-issued advertisements have

not been consumed, no additional advertisements are necessary.

To dequeue an element, the local queue is checked first. If the local queue

is not empty, an element is dequeued. After successful dequeueing, the con-

sumer records that the last-dequeued element was in the local queue. If the

queuewas empty, any advertisements that hadbeen receivedareused to assist

in finding non-empty queues, and are checked in order of distance from the

consumer. When responding to an advertisement, it is useful to update the

advertiser’s record of advertisements consumed. If an element is dequeued

froma remotequeue, the locationof that queue is recordedas the sourceof the

last-dequeued element. When checking empty remote queues, if that queue’s

last-consumed record points to another location it is considered to be an ad-

vertisement to check. If an advertisement is received while checking remote

queues, it is checked before any other remote queues. Thus, consumers in

search of elements to dequeue can cooperate in locating non-empty queues.

If noneof the advertisements result in a foundelement, it is necessary to check

all remote queues, in the order of distance from the consumer, using the same

procedure as responding to advertisements. If all remote queues are empty,

the consumermust either return empty-handed orwait for an ad to be posted.

This distributed data structure assures that queued data is preferentially con-

sumed near its production and that end-to-end ordering from one producer

to one consumer is maintained.

115

5.3.3.2 Benchmark

To illustrate the different performance characteristics of the two types of

queue, four simple benchmarks were designed. They each use two threads

per location, one to enqueue 4-byte elements into a shared queue, the other

to dequeue them. The queue is shared among all of the threads. The producer

threads enqueue 10,000 elements, and the consumer threads dequeue 10,000

elements before exiting.

The first benchmark uses the lock-free qlfqueue as the shared queue, the

seconduses pthreads and shares a cprops-basedmutex-protected queue. The

third benchmark is identical to the first, except it uses the distributed qdqueue

as the shared queue. The fourth benchmark is designed to be very similar to

the other benchmarks, but uses Intel Threading Building Blocks (TBB) to cre-

ate threadsusinga parallel_foroperation, anduses theTBB’sown concurrent_queue

as the shared queue. Both the third and fourth benchmark can also use large

1024-byte queue elements rather than 4-byte elements.

5.3.3.3 Performance

Figure 5.7 illustrates the effect of strict orderingon the scalability of aqueue

by comparing the lock-free qlfqueue to a single-mutex queue implementation

from the cprops library [2]. Operations per second were calculated by taking

the number of operations performed (10,000 enqueue operations and 10,000

dequeue operations per location) and dividing by the time necessary to finish

the entire benchmark. The first and second benchmarks were both run ten

times on each test system, with each level of parallelism. Figure 5.7 presents

116

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 1 2 4

O
p

e
ra

ti
o

n
s
 p

e
r

S
e

c

Number of Threads
Lock-free Queue

One Mutex Queue

(a) Xeon

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1 2 4 8 16 32

O
p

e
ra

ti
o

n
s
 p

e
r

S
e

c

Number of Threads
Lock-free Queue

One Mutex Queue

(b) Altix

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 1 2 4 8 16 32 64 128

O
p

e
ra

ti
o

n
s
 p

e
r

S
e

c

Number of Threads
Lock-free Queue

One Mutex Queue

(c) Niagara 2

Figure 5.7: Scaling Simple Ordered Queues
These graphs compare the enqueue/dequeue operations per second achieved by strictly ordered

queues over different numbers of producers and consumers. Lock-free queues are significantly

faster than mutex-based queues, but serialization to ensure ordering limits the scalability of

such queues.

the average results of those ten runs; each data point is the average result of

ten benchmark runs.

Both themutex-based cprops queue and the lock-free qlfqueue queue en-

sure global ordering via a serialized critical section: the serialization defines

the ordering. Using a lock-free queue can be orders ofmagnitude faster than a

mutex-based queue because it uses hardware assistance to minimize the size

of the critical section as well as the overhead of synchronization. Neverthe-

less, this serialization acts as a bottleneck, preventing strictly ordered queues

from scaling. Additional threads, rather than increasing the number of oper-

ations performed per second, increase the contention for the critical section,

and decrease the number of operations that can be performed per second.

Figure 5.8 compares the performance and scalability of the qdqueue and

the Intel Threading Building Blocks concurrent_queue, which provide a similar

end-to-end-only ordering guarantee. The qthread distributed queue can op-

erate in twomodes, one where its queues are strictly tied to processing nodes,

and onewhere they aren’t. The strictermode is labeled in the graphs as “Affin-

117

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

 1 2 4

O
p

e
ra

ti
o

n
s
 p

e
r

S
e

c

Number of Threads
Qthread Dist. Queue (Affinity)

Qthread Dist. Queue
Intel TBB Queue

(a) Xeon

0
1e+06
2e+06
3e+06
4e+06
5e+06
6e+06
7e+06
8e+06
9e+06
1e+07

 1 2 4 8 16 32

O
p

e
ra

ti
o

n
s
 p

e
r

S
e

c

Number of Threads
Qthread Dist. Queue (Affinity)

Qthread Dist. Queue
Intel TBB Queue

(b) Altix

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

 1 2 4 8 16 32 64 128

O
p

e
ra

ti
o

n
s
 p

e
r

S
e

c

Number of Threads
Qthread Dist. Queue (Affinity)

Qthread Dist. Queue

(c) Niagara 2

Figure 5.8: Scaling Distributed Queues
These graphs compare the enqueue/dequeue operations per second of a locality-aware distrib-

uted queue to the Intel Threading Building Blocks concurrent_queue. Locality-awareness

provides significant benefits in complex systems.

ity” mode, and has a performance edge on the more complex Altix machine

(Figure 5.8(b)).

The overhead of the distributed queue’s locality-aware design does not sig-

nificantly impact single-threaded performance; both the distributed queue

and the lock-freequeue (Figure5.7)provided similar speedwitha single thread

on all three systems. However, the extra logic and relaxed ordering require-

mentsof thedistributedqueueprovide significantperformance improvements

over the lock-free queue. Most fundamentally, with two or more threads, op-

erations per second increase rather thandecreasewhen additional threads are

used. In more concrete terms, at scale, the distributed queue performed 9.6

times better than the lock-free queue on the Altix, 72 times better on the Nia-

gara 2 server, and 4 times better on the Xeonworkstation. TheNiagara 2 server

provided themost impressiveperformance improvementsbecausemost threads

share access to a cache, which minimizes the cost of inter-thread communi-

cation. The Altix and Xeon have aggressive cache-coherency protocols, which

118

0

2e+05

4e+05

6e+05

8e+05

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

 1 2 4

O
p

e
ra

ti
o

n
s
 p

e
r

S
e

c

Number of Threads
Qthread Dist. Queue (Affinity)

Qthread Dist. Queue
Intel TBB Queue

(a) Xeon

0

5e+05

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

 1 2 4 8 16 32

O
p

e
ra

ti
o

n
s
 p

e
r

S
e

c

Number of Threads
Qthread Dist. Queue (Affinity)

Qthread Dist. Queue
Intel TBB Queue

(b) Altix

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

1e+07

 1 2 4 8 16 32 64 128

O
p

e
ra

ti
o

n
s
 p

e
r

S
e

c

Number of Threads
Qthread Dist. Queue (Affinity)

Qthread Dist. Queue

(c) Niagara 2

Figure 5.9: Scaling Data-Laden Distributed Queues
These graphs compare the enqueue/dequeue operations per second of a locality-aware distrib-

uted queue to the Intel Threading Building Blocks concurrent_queue when passing large

amounts (1024-bytes) of data. Locality-awareness is particularly important when handling

large blocks of data, because there is a high penalty for non-local dequeueing.

penalize any shared information. Thus, even the minimal cooperation be-

tween consumers reduces throughput versus single-threaded operation.

The benchmark in Figure 5.8, however, is only transferring small word-

size pieces of data. When the queued data is large, the impact of cache co-

herency is reduced and the importance of locality becomes clearer. Figure 5.9

illustrates the effect of using end-to-end ordered distributed queues to handle

larger (1024-byte) blocks of data.

The larger the data being queued, the higher the cost of transferring the

data to another node, and thus the greater the penalty for ignoring the local-

ity of data and computation. Large blocks of data also tend to keep queue

management information out of the cache, and thus cache coherency is not

as significant a problem.

119

5.4 Conclusion

Developing portable locality-aware data structures, even with the advan-

tage of a threading librarywith an integrated locality framework is a significant

challenge. This chapter presented several data structure designs that use lo-

cality information to adapt to system topology at runtime and examined the

selection of optimal system-specific design parameters. The effectiveness of

locality-aware design in distributed data structures was demonstrated. Mem-

ory pools can be up to 155 times faster than traditional malloc()while provid-

ing location-specific memory. The qarray distributed array design supports

strong-scaling on large ccNUMA systems, executing 31.2 times faster with 32

nodes than with one. The qdqueue distributed queue design provides up to a

47 times improvement over a fast lock-free queue by providing only an end-

to-end ordering guarantee. Its locality-awareness provides a benefit of up to

830% improvement in performance over state-of-the-art concurrent queues

on a large ccNUMA system. Importantly, the use of locality information does

not significantly impact serial performance or performance on small systems

with uniformmemory access latencies.

120

CHAPTER 6

ADAPTIVE COMPUTATIONAL TEMPLATES

6.1 Introduction

The previous chapter presented three locality-aware data structures that

alter their behavior—both communication and data placement—based on

the topology of the underlying computer system at runtime. In so doing, as

discussed in Chapter 4, they carefully map their underlying structure to the

hardware resources to take better advantage of that hardware. This would be

more difficult without having locality integrated into the threading interface.

This chapterpresents thedesignof three computational abstractionsbased

on the qthread API that adapt to machine topology without the programmer

needing to explicitly consider memory topology and demonstrates their per-

formance on the same range ofmachine topologies used in the previous chap-

ter. The abstraction are sorting, all-pairs, and wavefront. Several methods of

choosing computation locations based on input location are also examined.

Developing large-scalemultithreadedapplications is quite difficult, simply

because there are many events happening at the same time, which results in

potential errors and performance tuning issues that do not affect serial pro-

grams. As discussed in Chapter 4, these issues include data structure con-

tention, deadlock, race conditions, communicationoverhead, andmore. Poor

121

choices in application design can prevent the program from taking full advan-

tage of available hardware resources. However, coordinatingmultiple threads

of executionwhile keeping all potential issues inmind and tailoring the design

to a generic hardware topology requires the skill of a distributed computing

expert.

Due to the specialized skills required to build high performance parallel

software from scratch, it has become commonplace to use additional pro-

gramming abstractions to simplify the programming problem. Such abstrac-

tions provide a simple interface for the programmer with clear rules that are

easy to reason about while hiding the details of how the systemwill realize the

abstraction.

The challenge of a good computational abstraction is to hide the details of

the underlying system and adapt to whatever system is available. It must pro-

vide a natural-seemingmeans of segmenting the necessary work into parallel

tasks, andmust then have a way of deciding where and when to perform each

parallel task.

One easy metric to use when evaluating a computational abstraction is to

see how transparently it can avoid basic problems like false sharing [53] and

minimize the necessary communication. As a simple example, the simplest

map function over a distributed data structure is a single thread that can it-

erate over the distributed data structure. If the thread can migrate, every mi-

gration is communication, so an implementation that executes the mapping

functiononevery element in thedata structure in a given locationbeforemov-

ing on will have less communication than one that uses a random or linear it-

eration scheme. As another example, inmany cases each operation that needs

122

to be performed has more than one input and produces an output. Thus, the

best location to perform each operation depends on the locations of its inputs

and outputs; the optimal location minimizes the overhead for all of the nec-

essary communications.

6.2 Sorting

Sorting is a somewhat unusual computational abstraction. As a generic

function, it is used in many applications to create sorted lists or to group cat-

egories of data. But in concept, the “sort” simply provides a framework for

applying a “comparison” function to all pairs of data in a group, eliminating

duplicate work by assuming that “comparisons” are transitive. The compari-

son functionmay do other things, such as return randomvalues ormodify the

things being compared, to achieve a non-traditional result. As such, sorting

algorithms can be used as shuffle algorithms, routing algorithms, graphical

posterization algorithms, and normalization algorithms, among other things.

Because it is such a popular and convenient tool, sort has been well-stud-

ied. Sorting in new architectures, however, presents some unique challenges

andsomeuniqueopportunities. For example,whileparallel sortingalgorithms

are easy to imagine—merge sort is a sort with clear parallelism opportuni-

ties— they do not always work well. The merge sort is a two-stage recursive

sorting algorithm: first divide the data to be sorted in half (recursively, until

they are sorted), then merge the two halves together. While splitting data ar-

bitrarily is easy to do in parallel, the merging phase is difficult to parallelize

without specialized hardware; most implementations rely on the existence of

PRAM [32, 107]. Evenmore recent parallel implementations ofmerge sort [89]

123

cannot do better than 2.3x improvement on eight commodity processors. An-

other popular sorting algorithm is the QuickSort, which provides impressive

performance in serial applications. In any QuickSort algorithm, there are also

two phases: partitioning the data into two segments around a “pivot” point,

and then sorting each segment independently. The key to parallelizing the

QuickSort algorithm is a parallel partition algorithm.

6.2.1 A Parallel Partition Algorithm

ThebasicHoareQuickSort partition algorithm [34] is given in Figure 6.1. In

order to parallelize this algorithm, the input must be divided amongmultiple

threads. Each thread can partition its subset of the input around the specified

pivot. If each thread’s portion of the input is entirely separate from that of the

other threads, the partitioned portions will need to be merged after all of the

threads have finished partitioning. By interleaving the thread divisions, this

merge phase can be avoided.

A quick way of dividing an array among n threads is to make each thread

responsible for every n’th array element. Figure 6.2 illustrates this idea using a

small ten-element array with two threads. At the top of the figure is the initial,

unsorted array. In the next line of the figure, the array has been logically di-

vided between two threads; the slightly raised numbers are assigned to thread

one, and the slightly lowered ones are assigned to thread two. Thepivot is cho-

sen to be 4.4. A variation of the standardQuickSort partitioning algorithm can

then be applied by both threads to their subsets of the array, resulting in the

third line of the figure. The only difference is that partition functionmust skip

the parts of the array that belong to other threads. The arrows here represent

124

1: procedureHoare-Partition(A, p,r)
2: pi vot ← A[p]
3: i ← p −1
4: j ← r +1
5: while TRUE do
6: repeat
7: j ← j −1
8: until A[j] ≤ pi vot
9: repeat
10: i ← i +1
11: until A[i] ≥ pi vot
12: if i < j then
13: exchange A[i] ↔ A[j]
14: else
15: return j
16: end if
17: end while
18: end procedure

Figure 6.1. Hoare QuickSort Partition Algorithm

the left (darker) and right (lighter) iterating edges of each thread’s partition-

ing algorithm, respectively, the i and j values in Figure 6.1. The threads then

cooperate to calculate the maximum of their right edges and the minimum

of their left edges to define a “fuzz” range. Outside this “fuzz” range, the ar-

ray is guaranteed to be properly partitioned around the pivot. This fuzz range

may then have the same parallel partitioning scheme applied to it, or if it is

sufficiently small it may be quickly partitioned serially.

Such a simple partitioning scheme works well on the Cray XMT. Mem-

ory addresses in the XMT are distributed throughout the machine at word

boundaries. When dividing work amongst several threads on the XMT, the

work regions can be as fine-grained as a single wordwithout significant loss of

125

4.4 5.3 8.6 9.7 5.9 6.3

3.0 0.6 4.4 8.6 5.9
6.4 8.5 5.3 9.7 6.3

6.3
0.6

6.4
4.43.0

5.3
8.6

9.7
5.9

8.5

6.44.4 0.6 6.3

3.0 5.3 8.6 9.7 5.90.6 4.4 6.4 6.3 8.5

Parallel Partitioned:

Fuzz Range:

Final Partitioning:

Pivot

Split, Pivot Chosen:

Initial Array: 3.0 6.4 0.6 8.5

Figure 6.2. Basic Parallel Partition Scheme

performance. Conventional processors, on the other hand, are optimized for

the common-case situation where memory is accessed linearly. They assume

that memory within page boundaries is contiguous and therefore use caches

with large cache lines. By optimizing for linear access with large 32-, 64-, and

even 128-byte cache lines, conventional cache designs limit the granularity

at which tasks can be divided among multiple processors without paying a

heavy cache coherency penalty. Thus, on conventional processors, this basic

parallel partitioning scheme is very likely to result in poor performance. Con-

sider that floating point numbers often use 8 bytes of memory while cache

lines in modern commodity processors are usually somewhere between 32

and 128 bytes, or enough to contain between four and sixteen array elements.

If this simplistic partitioningalgorithm isused, threadsondifferentprocessors

126

attempting to modify their independent portions of the array will be forced

to invoke the cache coherency protocol because their independent portions

use the same cache lines. Constantly sending the same memory back and

forth between processors to resolve cache coherency prevents the parallel al-

gorithm from exploiting the capabilities of multiple processors. Using addi-

tional processors may even result in slower performance than fewer proces-

sors. Clearly, the hardware must be taken into consideration when designing

an implementation of a computational abstraction.

Theqthread library includesan implementationof theQuickSort algorithm

that avoids contention problems by altering the granularity of data sharing to

match the current system’s cache line size. The idea is illustrated in Figure 6.3.

The array being sorted is the same as the previous figure, but instead of divid-

ing the array on single-element boundaries, elements are distributed among

the two threads in groups of four. This can create a slight load imbalance be-

tween the partitioning threads— in this example, thread one must partition

six numbers and thread two only partitions four—but this is an insignificant

difference when sorting large arrays and is never larger than a single cache

line. Again, the two threads partition their portion of the array, and again, a

fuzz region must be handled to reconcile the entire partitioning.

6.2.2 Performance

Grouping array elements along cache-line boundaries avoids cache-line

competition between processors while still exploiting the parallel computa-

tional power of all available processors on sufficiently large arrays. This mod-

ification, while small, is significant.

127

4.4 5.3 8.6 9.7 5.9 6.3

3.0 0.6 5.9
5.3 9.7

6.4 8.5
4.4 8.6

6.3

3.0
5.3 9.7

5.9
8.64.4

3.0 5.3 8.6 9.7 5.90.6 4.4

Parallel Partitioned:

Fuzz Range:

Final Partitioning:

0.6 6.4 8.5 6.3

0.6 6.4 8.5 4.4

8.5 6.4 6.3

Split, Pivot Chosen:

Initial Array:

Pivot

3.0 6.4 0.6 8.5

Figure 6.3. Cache-line Aware Parallel Partitioning

6.2.2.1 Benchmark

Abenchmarkwasdesigned to illustrate the scalability of the qthread-based

QuickSort implementation. The benchmark creates an array of one billion

double-precision floating point numbers, initializes them with random val-

ues, and then sorts them. This array occupies approximately 7.4 GB of mem-

ory. For comparison, a similar, trivial benchmark sorts the same array with

the libc qsort() function.

6.2.2.2 Results

Figure 6.4 illustrates the scalability of the sortingbenchmarks. Bothbench-

mark sort the array ten times on the three architectures discussed in the previ-

128

 150

 200

 250

 300

 350

 400

1 2 4
 1

 1 2

 1.4

 1.6

 1.8

 2

 2 2

E
x

e
c

u
ti

o
n

 T
im

e

S
p

e
e

d
u

p

Available Processors
libc qsort()

qutil_qsort()
qutil_qsort() scaling

(a) Xeon

 0

 200

 400

 600

 800

 1000

 1200

12 4 8 16 32
 1

 2

 3

 4

 5

 6

 7

 8

E
x

e
c

u
ti

o
n

 T
im

e

S
p

e
e

d
u

p

Available Processors
libc qsort()

qutil_qsort()
qutil_qsort() scaling

(b) Altix

 0

 500

 1000

 1500

 2000

 2500

148 16 32 64 128
 0

 2

 4

 6

 8

 10

 12

 14

 16

E
x

e
c

u
ti

o
n

 T
im

e

S
p

e
e

d
u

p

Available Processors
libc qsort()

qutil_qsort()
qutil_qsort() scaling

(c) Niagara 2

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16 32 64 128

S
p

e
e

d
u

p

Available Processors

Xeon
Altix

Niagara 2
Linear

(d) Scaling qutil_qsort()

Figure 6.4. Libc’s qsort() and qutil_qsort() Sorting 1 Billion Floating
Point Numbers

ouschapter. Thefigurepresents theaverageexecution times. InFigures 6.4(a)–

(c), theexecution timesof thebenchmarksaredirectly compared. The speedup

is also provided in these graphs, on the right-hand y-axis, as well as in Fig-

ure 6.4(d).

Figures 6.4(a)–(c) illustrate that on every architecture only two threads are

necessary to provide a faster sort than the standard qsort(). While linear scal-

ing is not achieved, because in a random list there is no guarantee of either

locality or uniform load, nevertheless the algorithm does provide solid per-

129

formance improvement with additional hardware. The 128-thread sort on the

Niagara 2 is over 14 times faster than single-threaded sorting, a 32-thread sort

on the Altix is over 7 times faster than single-threaded sorting, and a 4-thread

sort on the Xeon is just over 2 times faster than a single-threaded sort. It is

interesting to note that the libc qsort() implementation on Solaris is not es-

pecially good; the single-threaded version of the parallel QuickSort is faster.

6.3 All-Pairs

The All-Pairs abstraction is a computational abstraction applicable to a

wide range of problem categories in several scientific fields. Fundamentally,

the All-Pairs abstraction takes as input two sets of data and a “combination”

function that accepts two elements as input, one from each data set. This

function is then applied to all pairs of elements from the two sets. Mathemat-

ically, with one set of n elements and another ofm elements, the combination

functionmust be called n×m times. If the combination function is commuta-

tive, thenumberof times the functionmust execute canbe reduced to n!
(n−2)!+n.

The basic concept is illustrated in Figure 6.5, where elements from set A and

set B must be combined.

All-Pairs is useful in a wide range of problem categories from graph theory

to biometrics to datamining. In graph theory, the all-pairs shortest path prob-

lem is well-studied, and used for all manner of routing problems. The field of

biometrics often finds itself computing all-pairs issueswhen testing new algo-

rithms. Because biometrics is the study of measuring and identifying human

biological characteristics, one of the more common questions that is asked is

whether one sample is from the same source as another sample. Frequently,

130

0

1

B:

B

B

B

B

0

2

3

4

A3A: A A A A0 1 2 4

A3 B1
F(,)

A B4
F(,)

B

Figure 6.5. The All-Pairs Problem

a large database of samples from known sources is built and new identifica-

tion algorithms are tested by using them to compare every sample to every

other sample. The algorithms produce some sort of output, and a collection

of this output from the comparison of every sample to every other sample is

a “similarity matrix”, which represents the accuracy of the comparison func-

tion. Thismatrix can be compared to thematrix of other algorithms, enabling

quantitative analysis of algorithm effectiveness.

In data mining applications, the behavior is similar. One phase of many

datamining knowledge discovery algorithms is to react to bias or noise within

a block of data. Different classification algorithms are effective in combating

different types of noise in data. A common way of testing classification algo-

rithm effectiveness is to run the algorithm against many different examples

of noise combined with many different examples of data. A large database of

131

noise categories (defined as distributions) and example data (also defined as

distributions) is built, and a test harness function is used to combine noise

with data and feed the result to the classifier being tested.

It is worth pointing out that not all problems that can be phrased as an All-

Pairs problem are most efficiently computed that way. For example, search-

ing a block of data for a given value can be presented in terms of an All-Pairs

problem: compare the search-key (a set with one element) with every element

in another, much larger, set. Such problems can usually be better served by

more specific algorithms. What is being considered here is exclusively prob-

lems which actually require all of the output values from executing the com-

bination function with every pairing of data from the two input sets.

6.3.1 Design

One of the convenient aspects of the All-Pairs problem is that every com-

parison can be computed independently, which makes job scheduling some-

what simpler. When generating an output matrix in a parallel setting, the key

issue thenbecomesdata distribution: where are the inputs, andbasedon that,

where should the comparison function execute? Viewed as a ThreadScope

graph where every cell’s computation is performed by a separate thread, as

in Figure 6.6, it is unclear that there is a good way of dividing the problem into

localized pieces. The input is distributed among threads quite broadly.

To address the question of discovering input’s location, this All-Pairs im-

plementation takes input data sets in the form of qarrays. Each element of

a qarray has an inherent location, and those elements are even organized in

groups that are then distributed across the system. As such, the basic inter-

132

1

27

2 3 4 5 67 8 9 10 1112 13 14 15 1617 18 19 20 2122 23 24 25 26

A0 A1 A2 A3 A4B0 B1 B2 B3 B4

M00 M01 M02 M03 M04M10 M11 M12 M13 M14M20 M21 M22 M23 M24M30 M31 M32 M33 M34M40 M41 M42 M43 M44

Figure 6.6. The Generic All-Pairs Structure, 5×5 Input

typedef void (*dist_f) (const void *unit1, const void *unit2);

void qt_allpairs(const qarray *array1, const qarray *array2,
const dist_f distfunc);

Figure 6.7. The Qthread Library’s All-Pairs Interface

face to the All-Pairs computational abstraction is the function qt_allpairs(),

as defined by the function prototypes in Figure 6.7. In that prototype, array1

and array2 are the input data sets and distfunc is a function for combining or

comparing elements from both arrays.

The next design issue is the question of scheduling work: how, and where?

ThisAll-Pairs implementation takes theworker-threadapproach, creatingworker

threads for each location in the system. Theseworker threads fetchwork units

from a distributed qdqueue, thereby prioritizing nearby work over more dis-

tant work. Because eachwork unit can be executed independently, work units

canbe inserted into theworkqueue inanyorder, and thequeuecanessentially

be pre-loaded with work. Thus, a separate thread is responsible for adding

work units to the queue.

133

A A A0 1 2 4

T1 T1

T1 T1

T1

T1

T1

T2

T2

T2

T2

T2

T2

T3

T3

T3 T3

T3

T3

T4

T4

T4

T4 T4

B

T4

1

B:

B

B

B

B

0

2

3

4

A3A: A

(a) Round Robin
Assignment

B

B

B

0

2

3

4

A3A: A A A A0 1 2 4

T1

T1 T1

T2

T2

T2

T3 T3

T3

T4 T4

T4

T1T1T1T1

T2 T2 T2

T3 T3 T3

T4 T4

B

T4

1

B:

B

(b) Linear
Assignment

A A A0 1 2 4

T1 T2

T3

T3

T2 T3 T1

T3 T2 T2 T3

T3 T3 T2 T1 T3

T3 T2 T2 T4

T1 T3 T1 T3

B

T3

1

B:

B

B

B

B

0

2

3

4

A3A: A

(c) Random
Assignment

A A A0 1 2 4

T1 T2

T3

T4T2 T2

T2

T2

T2 T2

T1 T1

T1

T1

T1

T3 T3

T3

T3

T3

T4

T4

T4

T4 T4

1 1

1

2

2

2

3

3

4

B

4

1

B:

B

B

B

B

0

2

3

4

A3A: A

(d) Flip Assignment

1

6

23 4 5

o1o2 o3 o4 o5o6o7 o8 o9 o10

o11o12 o13 o14o15 o16o17 o18 o19o20 o21o22 o23 o24 o25 o26 o27o28 o29 o30o31o32 o33 o34 o35 o36o37 o38 o39

(e) Round Robin Structure

1

6

23 4 5

o1o2 o3 o4o5o6o7 o8 o9o10

o11o12o13 o14o15 o16 o17 o18 o19o20 o21o22 o23 o24o25 o26o27 o28 o29o30o31 o32 o33 o34o35 o36o37 o38 o39

(f) Linear Structure

1

6

2 3 4 5

o1 o2o3 o4 o5o6 o7o8 o9o10

o11 o12o13 o14o15 o16 o17o18 o19 o20 o21 o22o23o24 o25 o26o27 o28o29 o30o31 o32o33 o34o35o36 o37 o38 o39

(g) Random Structure

1

6

2 3 4 5

o1o2 o3 o4o5 o6 o7o8o9 o10

o11 o12 o13 o14o15 o16 o17 o18o19 o20 o21 o22o23 o24 o25 o26o27 o28 o29 o30o31 o32 o33 o34o35o36 o37 o38 o39

(h) Flip Structure

Figure 6.8. Impact of Distribution on All-Pairs Structure

While work units can be added to the distributed queue without paying

attention to the location, work units will execute faster in some locations than

they will in others based on the proximity of their input.

Figure6.8 illustrates thedifference that assignmentof tasks toworker threads

canhave on the structure—and thus the ease ofmapping to hardware—using

ThreadScope structure graphs that have the distributed queue removed (thus

showing only the result of the assignment). In each case, the outputs (and

their associated inputs) are assigned to each of four threads statically. There

are five elements in each of the two input sets, and they are each considered

separately. The assignments are illustrated above the structure graphs.

One of the convenient aspects of using GraphViz to generate ThreadScope

visualizations is that memory objects tend to cluster near the thread objects

134

that access them themost. Thus, in these structure graphs, the extent towhich

theassignments cause input elements to cluster aroundeachof the fourworker

threads illustrates how closely the inputs and worker threads are associated.

The three assignment techniques are fairly straightforward. The “round robin”

method, Figure6.8(a), assigns eachelementof theoutputmatrix to eachworker

thread in turn. The “linear”method, Figure 6.8(b), assigns outputmatrix com-

putation to worker threads according to the associated input from the B set.

The “random”method, Figure 6.8(c), assigns elements randomly (the graphed

example is only one of the possible assignments). And the “flip” method, Fig-

ure 6.8(d), first assigns each input to a thread, and then assigns each output

element to oneof the two input threads, randomly. In theThreadScope graphs

of eachassignmentpattern, Figures 6.8(e)–(h), the inputs are the squareblocks

along the top of each graph. The extent to which those inputs cluster together

or separate themselves indicates how much those inputs are associated with

a single worker thread. The example with the best cluster separation is the

“flip” assignment example. The mapping of inputs to worker threads affects

the amount of communication necessary to complete the task, and as such

has the potential to affect performance.

6.3.2 Performance

Given twoequallyweighted inputswith known locations, theoptimal place

to process both inputs is a location that is close to both inputs. Several options

are considered here:

All Same Enqueue all work units in location zero and simply have all work

threads pull from that single queue. This is used as a baseline.

135

Random Enqueue work units in random locations, regardless of their inputs.

Flip Enqueue eachwork unit in the same location as one of its inputs, chosen

randomly.

Halfway Prefer to execute eachwork unit in the locationwhere the sumof the

distances to both inputs is minimized, compared to other locations.

6.3.2.1 Benchmark

To demonstrate the scalability of the All-Pairs framework, and to evaluate

the design decisions, a benchmark was created. Two 30,000-element qarrays

using the static hash distribution are created and initialized randomly. These

qarrays and a function to multiply two input numbers and store the output

in a specified location are then given as arguments to the All-Pairs function.

The products are stored in a large (approximately 6 GB) output matrix. Each

placement algorithm was used with this algorithm ten times on each of the

threemachinesdiscussed in theprevious chapter. Itwas compared toa similar

implementation using the Intel Threading Building Blocks (TBB). Figure 6.9

presents results of that benchmark.

6.3.2.2 Results

The framework scales nicely on all three architectures, and has compa-

rable performance to the TBB implementation, but is more portable. There

is surprisingly little performance difference between the various methods of

choosing where to enqueue work, and surprisingly little difference between

the qthread-based implementation and the TBB implementation.

136

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 4
 1

 1.5

 2

 2.5

 3

 3.5

 4

E
x

e
c

u
ti

o
n

 T
im

e

S
p

e
e

d
u

p

Available Processors
TBB

All Same
Random

Flip
Halfway

Linear Speedup

TBB Speedup
All Same Speedup
Random Speedup

Flip Speedup
Halfway Speedup

(a) Xeon

 0

 5

 10

 15

 20

 25

 30

12 4 8 16 32

 2
 4
 6
 8
 10
 12
 14
 16
 18
 20

E
x

e
c

u
ti

o
n

 T
im

e

S
p

e
e

d
u

p

Available Processors
TBB

All Same
Random

Flip
Halfway

Linear Speedup

TBB Speedup
All Same Speedup
Random Speedup

Flip Speedup
Halfway Speedup

(b) Altix

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

148 16 32 64 128

 10

 20

 30

 40

 50

 60

E
x

e
c

u
ti

o
n

 T
im

e

S
p

e
e

d
u

p

Available Processors
All Same
Random

Flip
Halfway

Linear Speedup

All Same Speedup
Random Speedup

Flip Speedup
Halfway Speedup

(c) Niagara 2

 0

 10

 20

 30

 40

 50

 60

1 2 4 8 16 32 64 128

S
p

e
e

d
u

p

Available Processors

Xeon Qthreads
Altix Qthreads

Niagara 2 Qthreads
Xeon TBB
Altix TBB

Linear

(d) Scaling qt_allpairs()

Figure 6.9. All-Pairs, 30,000×30,000 Pairs with Several Distribution
Methods

One plausible explanation for the lack of variance in performance between

the different placement heuristics is that in this benchmark, access to the in-

puts is not a limiting factor in performance, which suggests that if the combi-

nation function was more complex or accessed its inputs more frequently the

performance characteristics might be different. To further explain the behav-

ior, the benchmark was instrumented to record the distances to the inputs of

every work unit that was completed. The average distances to the inputs for

each work unit gives a good rough estimate of the effectiveness of each work-

137

 0

 5

 10

 15

 20

 25

 30

 1 2 4

A
v

g
.

A
c

c
e

s
s

 D
is

ta
n

c
e

Available Processors
All Same
Random

Flip
Halfway

(a) Xeon Distances

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 4 8 16 32

A
v

g
.

A
c

c
e

s
s

 D
is

ta
n

c
e

Available Processors
All Same
Random

Flip
Halfway

(b) Altix Distances

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 4 8 16 32 64 128

A
v

g
.

A
c

c
e

s
s

 D
is

ta
n

c
e

Available Processors
All Same
Random

Flip
Halfway

(c) Niagara 2 Distances

Figure 6.10. All-Pairs Work Unit Placement Heuristics

unit placement heuristic. Figure 6.10 illustrates these distance averages. Be-

cause there is so little variance in the distances to input memory across the

various distribution heuristics, there is naturally very little performance dif-

ference.

6.4 Wavefront

The Wavefront abstraction is a more complex computational abstraction

than either sorting or All-Pairs. It defines a two-dimensional recurrence re-

lationship within its output data. Like the All-Pairs abstraction, it takes two

ordered data sets as input and creates an outputmatrix. However, whereas all

elements of the output matrix could be computed independently in the All-

Pairs abstraction, in a Wavefront computation each output value depends on

the output values one row down, one column over, and both one row and one

column over. In other words, in the outputmatrixM , the value ofM [i , j] is the

result of some function F (M [i −1, j], M [i , j −1], M [i −1, j −1]). The two ordered

data sets taken as input to the function are considered to be the first row and

138

F

F

F

F

B5B4B3B2B1B0

A0

A1

A2

A3

A4

F

F

FF FFF

F

F F

F

Figure 6.11. The Wavefront Abstraction

first column used in generating the output matrix. The relationship is illus-

trated in Figure 6.11.

TheWavefront abstractionhas a richhistory in scientific computing. Itwas

first described as a “hyperplane” method by Lamport [103], and has proven

to be useful in a range of simulations problems, from economics and game

theory to particle physics [97] and parallel solution of triangular systems of

linear equations [74, 146, 177] to genetic sequencing. For example, in game

theory, the input can be all possible ending states of a game, and the recur-

rence relation can be used to work backwards to discover the path of deci-

sions that results in each outcome. In genetic sequencing, a Wavefront recur-

rence relation is used to describe—via dynamic programming—the sequence

alignment problem. The Smith-Waterman algorithm [161], for producing lo-

139

cal alignments, is a typical example of a wavefront-based gene sequencing al-

gorithm.

6.4.1 Design

One of the more challenging aspects of Wavefront-style problems is the

dependence of successive data calculations. Previous wavefront implemen-

tations typically rely on custom compiler optimizations and partial pipelining

to improve performance while guaranteeing that data will be ready when it is

needed. A naïve threaded implementation of a wavefront framework might

use a separate thread for each outputmatrix element that must be computed,

trusting on synchronization mechanisms—such as full/empty bits or atomi-

cally incrementedprogress counters—toensure that threadsbecomerunnable

onlywhen their inputs are ready. TheThreadScope structure of a small version

of such a program is illustrated in Figure 6.12. Such an architecture would, of

course, work, butwouldbewasteful: each thread requires state, and allocating

a thread’s worth of state for every element in a large output array can quickly

run out of state. While it is certainly possible to use a separate thread for each

output value, however, that is almost certainly a wasteful design.

Much like the All-Pairs abstraction, one of the key aspects of an efficient

Wavefront design is locality. In the All-Pairs abstraction, the locality of each

calculation was defined by its input, and as such, the input was in the form

of qarrays, making the location of any given piece of data easy to determine.

The Wavefront abstraction uses a similar approach for input, as illustrated by

the interface, defined in Figure 6.13. However, in the Wavefront abstraction,

140

1

84

2

obj1

8

obj2

15

obj3

24

obj4

34

obj5

obj6obj7

4

obj8

6

obj9

12

obj10

20

obj11

obj12

5

1110

obj13

14

9

17

obj14

22

16

26

obj15

31

25

35

obj16

40

obj17

1918

28

obj18

33

27

37

obj19

42

36

45

obj20

49

44

52

obj21

56

obj22

29

38

47

obj23

51

46

54

obj24

58

53

61

obj25

65

60

68

obj26

72

obj27

39

55

63

obj28

67

62

70

obj29

74

69

76

obj30

79

75

80

obj31

82

obj32

71

obj33

77

obj34

81

obj35

83

obj36

3

7

23

13

43

32

21

59

50

41

30

66

57

48

73

64

78

Figure 6.12. Naïve Wavefront ThreadScope Structure, 5×5 Input

the output of each calculation becomes input to the next few steps; thus, the

location of the output is important to track as well.

This Wavefront abstraction makes the assumption that the final edges of

the outputmatrix are themost important. Based on that assumption, the out-

put need not be a full matrix, but can be a “lattice” of qarrays, provided that

there are convenient mechanisms for quickly recalculating the missing inte-

rior values of the output matrix/lattice, should they be requested by the user.

The lattice is composed of “lathes”: “slats” (horizontal pieces) and “struts”

(vertical pieces) that frame open spaces. This lattice approach provides sev-

eral key benefits. First, it is more resource-efficient than an alternative full-

matrix design, becausememory used in calculating each successive lathe can

141

typedef void (*wave_f) (const void *restrict left,
const void *restrict leftdown,
const void *restrict down,
void *restrict out);

typedef struct qt_wavefront_lattice_s qt_wavefront_lattice;

qt_wavefront_lattice *qt_wavefront(qarray * restrict const left,
qarray * restrict const below,
wave_f func);

void qt_wavefront_print_lattice(const qt_wavefront_lattice *const L);
void qt_wavefront_destroy_lattice(qt_wavefront_lattice *const L);
void *qt_wavefront_query_lattice(const qt_wavefront_lattice *const L,

size_t x, size_t y);

Figure 6.13. The Qthread Library’s Wavefront Interface

be re-used for other lathes. Because of that efficiency, larger problems can be

calculated than would otherwise fit into memory. Secondly, each lathe can

be a qarray, thereby giving each slat and strut a location. This design is illus-

trated in Figure 6.14. The struts of the lattice are dark gray, and the slats are

light gray; each individual strut or slat is drawn with a thick black border. Ver-

tical sets of struts and horizontal sets of slats are both stored as qarrays, where

the size of each strut or slat is defined by the way the qarray segments itself

into location-contiguous sections. This lattice defines the size of work units

as well: each pair of left-hand strut and lower slat is used to generate the next

strut to the right and the next higher slat.

142

Input

Input

Figure 6.14. The Wavefront Lattice Design

6.4.2 Performance

Each lathe’s computation executes in a location that is informed by the lo-

cation of its inputs: the left input strut and the lower input slat. The location

of the output is defined by the location the computation that generated it.

One of the interesting aspects of the Wavefront abstraction is that while

its design is inherently parallel, that parallelism is inherently limited. The ab-

straction gets its name from the way that computation progresses across the

output matrix: a leading diagonal edge of computable units whose inputs are

ready. As such, the maximum parallelism is the number of elements in that

143

leading edge, which is equal to the number of elements in the smaller of the

two input sets—the vertical edge or one less than the horizontal input. This

can be seen in Figure 6.12, where the maximum logical parallelism for a five-

by-five output matrix is five.

6.4.2.1 Benchmark

A benchmark was designed to illustrate the performance characteristics of

theWavefront framework. Two 70,000-element qarrays of floating point num-

bers are initialized randomly and used as input to the qt_wavefront() func-

tion, along with a function to compute the average of the three inputs (left,

below, and diagonally left and below). The qt_wavefront() function creates a

lattice of qarrays when run, and returns it to the caller. With 70,000-element

input sets, this lattice represents approximately 36 GB of data. For compar-

ison, a similar benchmark using a naïve approach similar to the one in Fig-

ure 6.12 was implemented with Intel’s Threading Building Blocks.

6.4.2.2 Results

Both benchmarks were run on the three machines discussed in the previ-

ous chapter, ten times each. Figure 6.15 presents the average execution times

from both benchmarks. Clearly, the qthread-based implementation is more

efficient than the naïve approach. Besides the lack of scaling of the TBB-based

implementation, what is perhaps most noticeable about these graphs is the

dramatically differentperformanceon theNiagara 2,whichnever scales above

approximately four times single-threaded speed. Indeed, there is a point at

which more parallelism produces less beneficial results.

144

 0

 50

 100

 150

 200

 250

1 2 4

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
s

)

Available Processors
Qthreads TBB

(a) Xeon

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 2 4 8 16 32

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
s

)

Available Processors
Qthreads TBB

(b) Altix

 0

 50

 100

 150

 200

 250

 300

 350

14 8 16 32 64 128

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
s

)

Available Processors
Qthreads

(c) Niagara 2

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16 32 64 128

S
p

e
e

d
u

p

Available Processors

Xeon Qthr
Altix Qthr

Niagara 2 Qthr

Xeon TBB
Altix TBB

Linear

(d) Scaling

Figure 6.15. Wavefront, Generating a 70,000×70,000 Lattice

The poor scaling on the Niagara 2 is likely a result of a combination of the

fact that the Niagara 2 has only one FPU per core, while each core can handle

eight threads, and insufficient work. In a 70,000×70,000matrix, the work is di-

vided by the qarray into single-page localized segments of between 1024 (on

the Niagara 2) and 2048 (on the Altix) elements, limiting the exploitable paral-

lelism to somewhere between 34 and 68 units at peak. Because the wavefront

is iterating across a squarematrix,most of the time there are less than the peak

number of units available to execute at any given time. Assuming uniform ex-

145

ecution times, over the course of calculating a 68-unit-by-68-unit lattice, as is

used on the Niagara 2, there are an average of 34.3 work units available. Thus,

scalingmuchbeyond32processors is difficultwithout breakingup thosework

units. On the Altix, which uses a 34-by-34 lattice, an average of 17.3 work units

are available, which explains the falloff in scaling after 16 processors. Compli-

cating matters, when there are a large number of unoccupied worker threads,

work is more likely to be consumed by a distant non-local worker looking for

work—i.e. thework gets “stolen”—even if there are closer consumers thatwill

be ready soon, which reduces performance further. Additional parallel work

units could bemade available bymaking the output latticemore fine-grained,

but doing so increases the state requirements, and limits the problem size that

can be computed. Halving the size of qarray segments doubles the amount of

memory required to store the lathes of the lattice. One possibility for future

research is to use a multi-scale approach, allowing for relatively fine-grained

computation of each component of the lattice.

6.5 Conclusion

The computational templates presented in this chapter bring together all

of the concepts and technologies described in this dissertation. The templates

are designed for use in a large-scale multithreaded environment such as was

discussed in Chapter 1. They adapt to a variety ofmemory topologies by using

the qthread lightweight threading API with lightweight synchronization and

explicitly integrated locality, introduced in Chapter 3. They provide the pro-

grammer with computational and communication patterns that have an ex-

plicit structure, as discussed in Chapter 4, that must be adapted to the under-

146

lying system’s characteristics. The last two templates adapt their structure to

the topology of the system by relying on distributed data structures presented

in Chapter 5—both to allocate memory in specific locations and to distribute

input-defined work units to location-specific worker threads.

Thecomputational frameworks in this chapterpresent anarchetypeofpro-

gramming future-proof parallel applications so that they can adapt to new

memory topologies, architectures, and synchronization mechanisms, expos-

ing the full measure of algorithmic parallelism to be exploited, while being

easy to understand, program, and debug.

147

CHAPTER 7

CONCLUSION

7.1 Recapitulation

The future of computing is undoubtedly parallel. Despite the best efforts of

hardwaredesigners, the fundamental bottleneckof the vonNeumanncompu-

tationalmodel has only becomemore troublesomeover time and efforts to re-

design shared-memory computers to address the bottleneck typically rely on

fine-grained parallelism. Hardware-supported fine-grained parallelism sug-

gests a union between scheduling and layout that will likely provide amoving

target to applications, with every execution having a different topology. These

developments reveal the semantic disconnect between hardware-supported

parallelism features and software-accessible parallelism features.

This thesis advocates a newfine-grained threading approach that provides

access to hardware-supported parallelism features. These features— includ-

ing locality specification, topology querying, and atomic operations—cannot

be perfectly used by the compiler and must be both explicitly available to the

programmer andunderstoodby the scheduler. A fine-grained threading inter-

face that integrates hardware features enables accurate mapping and adapta-

tion of application algorithmic structure to hardware system topology.

148

Chapter 3 presented a practical fine-grained threading API and implemen-

tation, qthreads. The qthread design provides a coherent interface to thewide

variety of lightweight threading architectures and operating system topology

and CPU affinity interfaces. The library-based implementation trades some

semantic convenience for quick integration with existing applications and a

smaller impact on the toolchain. The benefits of this design were illustrated

with modified versions of the HPCCG andMTGL-based benchmarks.

Once a fine-grained threading interface is available, creating applications

that adapt to hardware topology requires understanding the structure of the

application or algorithm being used. Chapter 4 presented the ThreadScope

visualization tool to assist in understanding this parallel structure—a struc-

ture that involves all forms of communication, including not only explicit syn-

chronization but thread creation and destruction. This type of analysis also

provides a new way of approaching basic parallel correctness issues such as

bottlenecks, deadlocks, and race conditions.

The impactof application structureonportableperformancecanbedemon-

strated most directly with distributed data structures. Chapter 5 presented

several basicdistributeddata structuredesigns that leverage theqthread thread-

ing model to use memory and system resources effectively. The three distrib-

uted data structures—apool, an array, and a queue—achieve scalable perfor-

mance in a variety of different parallel environmentswith a variety of different

topologies.

Finally, Chapter 6 presented several large scale application structures used

in a variety of different fields that use the structural understanding encoded

into the distributed data structures to adapt their overall behavior to the hard-

149

ware topology. The computational templates presented encode parallel com-

putation in away that allows the implementation to adapt the execution of the

computation to the topology and resources available.

7.2 Future Work

As hardware support for lightweight threading interfaces continues to de-

velop, there will continue to be opportunities for expanding the understand-

ing of threaded applications.

7.2.1 Programming Interface

The qthread idea—API and implementation— is to provide a low-level

means of using hardware features and obtaining information about the com-

puter in away that is portable acrossmultiple hardware architectures, topolo-

gies, and operating systems. It is not, however, clear that any library-based

threading interface is the most convenient interface for expressing parallel

intent. While a library-based interface allows applications to be parallelized

piece-by-piece, the semantic limitationsof a library-basedAPI canmakeadapt-

ing old applications to use parallel loops somewhat awkward. For example,

packaging persistent data for threads to access must be explicit rather than

implicit. As such, there is work to be done in adapting other threading inter-

faces, such as OpenMP or Cilk, to use qthreads as their threading back-end.

This would provide a certain amount of freedom to the programmer as well

as a way of extending those interfaces to include locality information while

improving their scheduling mechanism.

150

Thepicture of the hardware topology provided to the programmer by exist-

ing topology libraries, including the qthread API, is somewhat simplistic. Ac-

counting for things like asymmetric connections andmultiple layers of mem-

ory within a single node are difficult, if not impossible. It is not clear what a

good design would be that could encapsulate the full range of potential struc-

tural situations. Even basic information, like cache line size, is difficult to de-

termine reliably or portably. An improved, portable method for determining

this information is desperately needed, but presents a significant design and

implementation challenge.

7.2.2 Debugging and Tuning

The ThreadScope tool has begun the task of using structural analysis to lo-

cate and identify potential threading problems. Problems that can be identi-

fied already are bottlenecks, race conditions, and deadlocks. This, of course, is

only a small subset of theparallel programming issues that couldbe identified.

Different synchronizationmechanisms often have their own unique potential

problems that can be identified structurally, and each threaded operation has

a different cost depending on the threading model.

Cost estimates can be used to locate situations where the threaded pro-

grammay need to alter its behavior to take best advantage of the given hard-

ware. For example, though a given loopmay be fully parallelizeable, creating a

separate thread for each iterationmaybeunwise if each iteration is sufficiently

short. If the average time to create and destroy a thread is x, and the time to

execute a single loop iteration is y , a threaded loop of n iterations will only

achieve improved performance if n × y < (n × x)+ y , assuming that n threads

151

can run in parallel. Additionally, if each thread unit can be given a weight—

perhaps represented by relative size—load imbalances can be caught.

Additional information about the systemonwhich the applicationwill run

can be used to identify potential problem as well. For example, each mem-

ory object may be shared by multiple threads. On a shared-cache multicore

system, this can be performed efficiently, but there are limits. If more threads

than cores with shared cache must access a givenmemory object, there is the

possibility that there will be cache coherency overhead as the object is trans-

ferred from cache to cache, resulting in a system-specific bottleneck. With

topology information, suggestions can be made about the mapping of appli-

cation structure to machine structure.

One of the synchronization approaches that is not addressed in this work

is transactional memory. Transactions have an impact on application struc-

ture similar to the impact of word-sized atomic operations, but can involve

a large number of memory objects. Resolving conflicts between overlapping

large atomic operations is a complex process, and a good visual representa-

tion of that process would greatly assist in designing efficient transactional

applications.

7.2.3 Data Structures

There are an infinite number of different data structures that can be re-

designed for a distributed setting, from hash tables and binary lookup trees to

heaps to unstructured graphs. Work designing such structures will never be

done. Even simple extensions to the data structures presented here are wor-

thy of further study.

152

Forexample, thereareavarietyof arrayoperations typical of scientific com-

puting that benefit from locality-awareness but that have not been examined

in this work. Array stencils are common in signal processing, image process-

ing, and solving partial differential equations. Applying a naïve stencil algo-

rithm to a distributed array is relatively straightforward, but with foreknowl-

edge of the stencils that will be used, the layout of the array could be improved

toalign stencil boundarieswith segmentboundaries and spawning threads for

stenciled-out array ranges could be avoided.

Another common array operation is the combination of arrays, such as

in string comparison, genetic research, or matrix multiplication—especially

withmulti-dimensional arrays. Thesearray combinationoperationshavemem-

ory access patterns that are well-understood, and provide opportunities for

locality-aware optimization. For example, in matrix multiplication, assuming

fixed memory affinity, the process can be broken into two sets of operations:

those where the components of both arrays are local and those where one of

the components is more distant. To optimize bus contention, performing the

operations that involve non-local memory access must be balanced with op-

erations that only require local memory access, and these operations can be

ordered to optimize cache use.

7.2.4 Computational Templates

There are also a great number of available computational templates that

canbeused to assist programmers in creating efficient software, andnew tem-

plates are being designed all the time. For example, MapReduce [43] is a pow-

erful data-processing abstraction recently popularized by Google. The power

153

of this abstraction is its inherent asynchronicity and easily pipelined design.

MapReduce is commonly implementedwitha “master”node that assigns tasks

to other nodes. Another way of implementing MapReduce is with distributed

queues for transporting data between each stage of the MapReduce pipeline.

A distributed queue can encourage the preservation of locality between the

pipeline stages without a master server. This design may be useful for explor-

ing the best number of workers at each pipeline stage, the optimalmethod for

transferring information between workers, and the effect of worker loss and

worker migration.

7.3 Postscript

When we had no computers, we had no programming problem ei-
ther. When we had a few computers, we had a mild programming
problem. Confronted with machines a million times as powerful,
we are faced with a gigantic programming problem.
—Edsger Dijkstra [47]

The challenge presented to each new generation of computer scientists is

to fully exploit the computers of yesterday while designing the computers of

tomorrow. There will probably always be a future-portability problem, but

designing applications and algorithms that adapt to the characteristics of the

systems they use is a major step toward mitigating the gigantic programming

problem posed by each new andmore powerful machine.

154

BIBLIOGRAPHY

1. T. S. Abdelrahman and T. N. Wong. Compiler support for array
distribution on NUMA shared memory multiprocessors. Jour-
nal of Supercomputing, 12(4):349–371, 1998. ISSN 0920-8542.
doi:10.1023/A:1008035807599.

2. I. Aelion. cprops - C prototyping tools. http://cprops.sourceforge.net,
March 2009.

3. A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz, J. D. Kubi-
atowicz, B. H. H. Lim, K. M. Mackenzie, and D. Yeung. The MIT Alewife
machine: Architecture and performance. In ISCA ’98: 25 years of the in-
ternational symposia on Computer Architecture (selected papers), pages
509–520, New York, NY, USA, 1998. ACM Press. ISBN 1-58113-058-9.
doi:10.1145/285930.286009.

4. S. Ahuja, N. Carriero, and D. Gelernter. Linda and friends. Computer, 19
(8):26–34, 1986. ISSN 0018-9162. doi:10.1109/MC.1986.1663305.

5. E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, S. Ryu, G. L.
Steele Jr., and S. Tobin-Hochstadt. The Fortress Language Specification.
SunMicrosystems, Inc., 1.0β edition, March 2007.

6. R. Altherr, R. Du Bois, L. Hammond, and E.Miller. Software performance
tuning with the Apple CHUD tools. IEEE International Symposium on
Workload Characterization, 0:1, 2006. doi:10.1109/IISWC.2006.302722.

7. R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and
B. J. Smith. The Tera system. Tera Computer Company, 1999.

8. C. S. Ananian, K. Asanovi , B. C. Kuzmaul, C. E. Leiserson, and S. Lie. Un-
bounded transational memory. In HPCA ’05: Proceedings of the 11th
International Symposium on High-Performance Computer Architecture,
pages 319–327, Washington, DC, USA, February 2005. IEEE Computer
Society. ISBN 0-7695-2275-0. doi:10.1109/HPCA.2005.41.

155

http://dx.doi.org/10.1023/A:1008035807599
http://dx.doi.org/10.1145/285930.286009
http://dx.doi.org/10.1109/MC.1986.1663305
http://dx.doi.org/10.1109/IISWC.2006.302722
http://dx.doi.org/10.1109/HPCA.2005.41

9. T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H.M. Levy. Scheduler
activations: Effective kernel support fot the user-level management of
parallelism. ACM Transactions on Computer Systems, 10(1):53–79, 1992.
ISSN 0734-2071. doi:10.1145/146941.146944.

10. J. K. Archibald. The Cache Coherence Problem in Shared-Memory Multi-
processors. PhD thesis, University ofWashington, Seattle,WA,USA, 1987.

11. R. H. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. E. Culler, J. M. Heller-
stein, D. A. Patterson, and K. Yelick. Cluster i/o with river: making the
fast case common. In IOPADS ’99: Proceedings of the sixth workshop on
I/O in parallel and distributed systems, pages 10–22, New York, NY, USA,
1999. ACM. ISBN 1-58113-123-2. doi:10.1145/301816.301823.

12. J. L. Baer. 2k papers on caches by y2k: Do we need more? Keynote ad-
dress at the 6th International Symposium on High-Performance Com-
puter Architecture, January 2000.

13. M. Bedy, S. Carr, X. Huang, and C.-K. Shene. A visualization sys-
tem for multithreaded programming. In SIGCSE ’00: Proceedings of
the thirty-first SIGCSE technical symposium on Computer science educa-
tion, pages 1–5, New York, NY, USA, 2000. ACM. ISBN 1-58113-213-1.
doi:10.1145/330908.331798.

14. J. W. Berry, B. A. Hendrickson, S. Kahan, and P. Konecny. Software and
algorithms for graph queries onmultithreaded architectures. InProceed-
ings of the International Parallel & Distributed Processing Symposium.
IEEE, 2007.

15. J. Berthold and R. Loogen. Visualizing parallel functional program runs:
Case studies with the eden trace viewer. In Parallel Computing: Architec-
tures, Algorithms and Applications, pages 121–128. John von Neumann
Institute for Computing, 2007.

16. R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Ran-
dall, and Y. Zhou. Cilk: an efficient multithreaded runtime system. In
Proceedings of the 5th ACMSIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, pages 207–216, New York, NY, USA, 1995.
PPOPP ’95, ACMPress. ISBN0-89791-701-6. doi:10.1145/209936.209958.

17. H. J. Boehm. Threads cannot be implemented as a library. In PLDI ’05:
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 261–268, New York, NY, USA,
2005. ACM Press. ISBN 1-59593-056-6. doi:10.1145/1065010.1065042.

156

http://dx.doi.org/10.1145/146941.146944
http://dx.doi.org/10.1145/301816.301823
http://dx.doi.org/10.1145/330908.331798
http://dx.doi.org/10.1145/209936.209958
http://dx.doi.org/10.1145/1065010.1065042

18. J. B. Brockman, P. M. Kogge, S. Thoziyoor, and E. Kang. PIM lite: On
the road towrds relentless multi-threading inmassively parallel systems.
Technical Report TR-03-01, Computer Science and Engineering Depart-
ment, University of Notre Dame, 384 Fitzpatrick Hall, Notre Dame IN
46545, February 2003.

19. J. B. Brockman, S. Thoziyoor, S. K. Kuntz, and P. M. Kogge. A low
cost, multithreaded processing-in-memory system. In WMPI ’04: Pro-
ceedings of the 3rd workshop on Memory performance issues, pages
16–22, New York, NY, USA, 2004. ACM Press. ISBN 1-59593-040-X.
doi:10.1145/1054943.1054946.

20. P. Budnik and D. J. Kuck. The organization and use of parallel memories.
IEEE Transactions on Computers, C-20:1566–1569, December 1971.

21. A.W.Burks,H.H.Goldstine, and J. vonNeumann. Preliminarydiscussion
of the logical design of an electronic computing instrument. Technical
report, Institute for Advanced Study, Princeton University, New Jersey,
June 1946. URL http://hdl.handle.net/2027.42/3972.

22. C. Ca caval, C. Blundell, M. M. Michael, H. W. Cain, P. Wu, S. Chi-
ras, and S. Chatterjee. Software transactional memory: Why is it
only a research toy? Queue, 6(5):46–58, 2008. ISSN 1542-7730.
doi:10.1145/1454456.1454466.

23. D. Callahan, B. L. Chamberlain, and H. P. Zima. The cascade high
productivity language. In Proceedings of the Ninth International Work-
shop on High-Level Parallel Programming Models and Supportive Envi-
ronments, pages 52–60. Institute of Electrical and Electronics Engineers,
April 2004. ISBN 0-7695-2151-7. doi:10.1109/HIPS.2004.1299190.

24. B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic instrumen-
tation of production systems. In Proceedings of the Annual Conference
on USENIX Annual Technical Conference, pages 2–2, Berkeley, CA, USA,
2004. ATEC ’04, USENIX Association.

25. D. F. Carr. How Google works. Baseline, July 2006. URL http://www.
baselinemag.com/c/a/Infrastructure/How-Google-Works-1/.

26. L. Ceze, J. Tuck, J. Torrellas, andC.Ca caval. Bulk disambiguationof spec-
ulative threads inmultiprocessors. In ISA ’06: Proceedings of the 33rd An-
nual International SymposiumonComputerArchitecture, pages 227–238,
Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2608-
X. doi:10.1109/ISCA.2006.13.

157

http://dx.doi.org/10.1145/1054943.1054946
http://hdl.handle.net/2027.42/3972
http://dx.doi.org/10.1145/1454456.1454466
http://dx.doi.org/10.1109/HIPS.2004.1299190
http://www.baselinemag.com/c/a/Infrastructure/How-Google-Works-1/
http://www.baselinemag.com/c/a/Infrastructure/How-Google-Works-1/
http://dx.doi.org/10.1109/ISCA.2006.13

27. D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A recursive model for
graph mining. In Proceedings of the 2004 SIAM International Conference
on Data Mining, 2004.

28. J. Chapin, A. Herrod, M. Rosenblum, and A. Gupta. Memory system
performance of UNIX on CC-NUMA multiprocessors. In SIGMETRICS
’95/PERFORMANCE ’95: Proceedings of the 1995 ACM SIGMETRICS joint
international conference onMeasurement andmodeling of computer sys-
tems, pages 1–13, New York, NY, USA, 1995. ACM Press. ISBN 0-89791-
695-6. doi:10.1145/223587.223588.

29. P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcio lu,
C. von Praun, and V. Sarkar. X10: an object-oriented approach to non-
uniform cluster computing. In OOPSLA ’05: Proceedings of the 20th
annual ACM SIGPLAN conference on Object-oriented programming, sys-
tems, languages, and applications, pages 519–538, New York, NY, USA,
2005. ACM. ISBN 1-59593-031-0. doi:10.1145/1094811.1094852.

30. S. Chaudhry, R. Cypher, M. Ekman,M. Karlsson, A. Landin, S. Yip, H. Zef-
fer, and M. Tremblay. Rock: A high-performance sparc cmt processor.
IEEEMicro, 29(2):6–16, 2009. ISSN 0272-1732. doi:10.1109/MM.2009.34.

31. E. G. Coffman, M. J. Elphick, and A. Shoshani. System dead-
locks. ACM Computing Surveys, 3(2):67–78, 1971. ISSN 0360-0300.
doi:10.1145/356586.356588.

32. R. Cole. Parallel merge sort. In SFCS ’86: Proceedings of the 27th Annual
Symposium on Foundations of Computer Science, pages 511–516, Wash-
ington, DC, USA, 1985. IEEE Computer Society Press. ISBN 0-8186-0740-
8. doi:10.1109/SFCS.1986.41.

33. M. E. Conway. Design of a separable transition-diagram compiler.
Communications of the ACM, 6(7):369–408, 1963. ISSN 0001-0782.
doi:10.1145/366663.366704.

34. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. The MIT Press, Cambridge, MA, USA, second edition, 2001.

35. I. Corporation. Intel c++ stm compiler, prototype edition 3.0.
http://software.intel.com/en-us/articles/intel-c-stm-compiler-
prototype-edition-20/, August 2009.

36. I. Corporation. Intel thread checker.
http://www.intel.com/support/performancetools/threadchecker/,
April 2009.

158

http://dx.doi.org/10.1145/223587.223588
http://dx.doi.org/10.1145/1094811.1094852
http://dx.doi.org/10.1109/MM.2009.34
http://dx.doi.org/10.1145/356586.356588
http://dx.doi.org/10.1109/SFCS.1986.41
http://dx.doi.org/10.1145/366663.366704

37. D. W. Craig. Nanothreads: flexible thread scheduling. Dissertation, Uni-
versity of Illinois at Urbana-Chamaign, Champaign, IL, USA, 2002.

38. Cray. Cray MTA-2 system - HPC technology initiatives, November 2006.
URL http://www.cray.com/products/programs/mta_2/.

39. Cray. CrayXMTplatforrm. http://www.cray.com/products/xmt/index.html,
October 2007.

40. D. C. Cronk. Dynamic Load Balancing via ThreadMigration. PhD thesis,
The College of William andMary, 1999.

41. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Effi-
ciently computing static single assignment form and the control depen-
dence graph. ACM Transactions on Programming Languages and Sys-
tems, 13(4):451–490, 1991. ISSN 0164-0925. doi:10.1145/115372.115320.

42. P. Damron, A. Fedorova, Y. Lev, V. Luchangco,M.Moir, andD.Nussbaum.
Hybrid transactional memory. ACM SIGPLAN Notices, 41(11):336–346,
2006. ISSN 0362-1340. doi:10.1145/1168918.1168900.

43. J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. In OSDI’04: Proceedings of the 6th conference on Sym-
posium on Operating Systems Design & Implementation, pages 10–10,
Berkeley, CA, USA, 2004. USENIX Association.

44. E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob, and D. S. Katz. Pega-
sus: A framework formapping complex scientificworkflowsontodistrib-
uted systems. Scientific Programming, 13(3):219–237, 2005. ISSN 1058-
9244.

45. P. J. Denning. Virtual memory. ACM Computing Surveys, 2(3):153–189,
1970. ISSN 0360-0300. doi:10.1145/356571.356573.

46. D. Dice, O. Shalev, and N. Shavit. Transactional locking ii. In Proceedings
of the 20th International Symposium on Distributed Computing, 2006.

47. E. W. Dijkstra. Visuals for BP’s Venture Research Conference. URL
http://www.cs.utexas.edu/users/EWD/ewd09xx/EWD963.PDF. circu-
lated privately, June 1986.

48. C. Ding and K. Kennedy. Improving cache performance in dy-
namic applications through data and computation reorganization at run
time. ACM SIGPLAN Notices, 34(5):229–241, 1999. ISSN 0362-1340.
doi:10.1145/301631.301670.

159

http://www.cray.com/products/programs/mta_2/
http://dx.doi.org/10.1145/115372.115320
http://dx.doi.org/10.1145/1168918.1168900
http://dx.doi.org/10.1145/356571.356573
http://www.cs.utexas.edu/users/EWD/ewd09xx/EWD963.PDF
http://dx.doi.org/10.1145/301631.301670

49. J. E. Dorband. Sort computation. In Proceedings of the 2nd Sympo-
sium on the Frontiers of Massively Parallel Computation, pages 137–141.
IEEE Computer Society Press, October 1988. ISBN 0-8186-5892-4.
doi:10.1109/FMPC.1988.47442.

50. U. Drepper and I. Molnar. The native POSIX thread library for linux.
Technical report, RedHat Inc., February 2005.

51. T. H. Dunigan. Denelcor HEP Multiprocessor Simulator, June 1986.

52. A. Dunkels, O. Schmidt, T. Voigt, and M. Ali. Protothreads: Simplifying
event-driven programming of memory-constrained embedded systems.
In SenSys ’06: Proceedings of the 4th International Conference on Embed-
ded Networked Sensor Systems, pages 29–42, New York, NY, USA, 2006.
ACM Press. ISBN 1-59593-343-3. doi:10.1145/1182807.1182811.

53. S. J. Eggers and T. E. Jeremiassen. Eliminating false sharing. In Pro-
ceedings of the 1991 International Conference on Parallel Processing, vol-
ume 1, pages 377–381, August 1991.

54. S. J. Eggers and R. H. Katz. The effect of sharing on the cache and bus
performance of parallel programs. InASPLOS-III: Proceedings of the third
international conference on Architectural support for programming lan-
guages and operating systems, pages 257–270, New York, NY, USA, 1989.
ACM Press. ISBN 0-89791-300-0. doi:10.1145/70082.68206.

55. T. El-Ghazawi and L. Smith. UPC: Unified parallel C. In SC
’06: Proceedings of the 2006 ACM/IEEE conference on Supercomput-
ing, page 27, New York, NY, USA, 2006. ACM. ISBN 0-7695-2700-0.
doi:10.1145/1188455.1188483.

56. R. S. Engelschall. Portablemultithreading: The signal stack trick for user-
space thread creation. In ATEC’00: Proceedings of the Annual Technical
Conference on 2000 USENIX Annual Technical Conference, pages 20–20,
Berkeley, CA, USA, 2000. USENIX Association.

57. P. Erd s and A. Rényi. On random graphs, i. Publicationes Mathematicae
(Debrecen), 6:290–297, 1959.

58. D. Ferrari. Improving locality by critical working sets. Com-
munications of the ACM, 17(11):614–620, 1974. ISSN 0001-0782.
doi:10.1145/361179.361195.

160

http://dx.doi.org/10.1109/FMPC.1988.47442
http://dx.doi.org/10.1145/1182807.1182811
http://dx.doi.org/10.1145/70082.68206
http://dx.doi.org/10.1145/1188455.1188483
http://dx.doi.org/10.1145/361179.361195

59. R. Fitzgerald and R. F. Rashid. The integration of virtual memory
management and interprocess communication in accent. ACM Trans-
actions on Computer Systems, 4(2):147–177, 1986. ISSN 0734-2071.
doi:10.1145/214419.214422.

60. S. Fortune and J. Wyllie. Parallelism in random access machines. Pro-
ceedings of the 10th Annual ACM Symposium on Theory of Computing,
pages 114–118, 1978. doi:10.1145/800133.804339.

61. M. P. I. Forum. MPI: A message passing interface standard. Interna-
tional Journal of Supercomputer Applications (Special Issue on MPI), 8
(3/4), 1994.

62. E. E. Frank and R. A. Aydt. The PABLO Performance Visualization System
Functional Specification. Department of Computer Science, University
of Illinois, February 1995.

63. F. Galilée, J.-L. Roch, G. G. H. Cavalheiro, andM. Doreille. Athapascan-1:
On-line building data flow graph in a parallel language. In Proceedings of
the 1998 International Conference on Parallel Architectures and Compi-
lation Techniques, page 88, Washington, DC, USA, 1998. PACT ’98, IEEE
Computer Society Press. ISBN 0-8186-8591-3.

64. E. R. Gansner and S. C. North. An open graph visualization system
and its applications to software engineering. Software—Practice & Ex-
perience, 30(11):1203–1233, 2000. ISSN 0038-0644. doi:10.1002/1097-
024X(200009)30:11<1203::AID-SPE338>3.3.CO;2-E.

65. W. Gloger. Dynamicmemory allocator implementations in Linux system
libraries. http://www.dent.med.uni-muenchen.de/ wmglo/, May 1997.
URL http://www.dent.med.uni-muenchen.de/~wmglo/.

66. S. C. Goldstein, K. E. Schauser, and D. E. Culler. Lazy threads: Im-
plementing a fast parallel call. Journal of Parallel and Distributed
Computing, 37(1):5–20, 1996. URL citeseer.ist.psu.edu/article/
goldstein96lazy.html.

67. D. Gregor and A. Lumsdaine. The Parallel BGL: A generic library for dis-
tributed graph computations. InParallel Object-Oriented Scientific Com-
puting (POOSC), July 2005.

68. B. Gu, Y. Kim, J. Heo, and Y. Cho. Shared-stack cooperative threads. In
SAC ’07: Proceedings of the 2007 ACM symposium on Applied Computing,
pages 1181–1186, New York, NY, USA, 2007. ACM Press. ISBN 1-59593-
480-4. doi:10.1145/1244002.1244258.

161

http://dx.doi.org/10.1145/214419.214422
http://dx.doi.org/10.1145/800133.804339
http://dx.doi.org/10.1002/1097-024X(200009)30:11%3C1203::AID-SPE338%3E3.3.CO;2-E
http://dx.doi.org/10.1002/1097-024X(200009)30:11%3C1203::AID-SPE338%3E3.3.CO;2-E
http://www.dent.med.uni-muenchen.de/~wmglo/
citeseer.ist.psu.edu/article/goldstein96lazy.html
citeseer.ist.psu.edu/article/goldstein96lazy.html
http://dx.doi.org/10.1145/1244002.1244258

69. M. Hall, P. M. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. La-
Coss, J. Granacki, J. B. Brockman, A. Srivastava, W. Athas, V. Freeh,
J. Shin, and J. Park. Mapping irregular applications to DIVA, a PIM-
based data-intensive architecture. In Supercomputing ’99: Proceed-
ings of the 1999 ACM/IEEE conference on Supercomputing (CDROM),
page 57, New York, NY, USA, 1999. ACM Press. ISBN 1-58113-091-0.
doi:10.1145/331532.331589.

70. D. T. Harper, III and J. R. Jump. Vector access performance in parallel
memories using skewed storage scheme. IEEE Transactions on Comput-
ers, 36(12):1440–1449, 1987. ISSN 0018-9340.

71. K. Harzallah and K. C. Sevcik. Predicting application behavior in large
scale shared-memory multiprocessors. In Supercomputing ’95: Pro-
ceedings of the 1995 ACM/IEEE conference on Supercomputing (CDROM),
page 53, New York, NY, USA, 1995. ACM Press. ISBN 0-89791-816-9.
doi:10.1145/224170.224356.

72. C. T. Haynes, D. P. Friedman, and M. Wand. Continuations and corou-
tines. In LFP ’84: Proceedings of the 1984 ACM Symposium on LISP and
Functional Programming, pages 293–298, NewYork, NY, USA, 1984. ACM
Press. ISBN 0-89791-142-3. doi:10.1145/800055.802046.

73. M. T. Heath and J. E. Finger. ParaGraph: A tool for visualizing perfor-
mance of parallel programs. Technical report, Oak Ridge National Labo-
ratory, 1994.

74. M. T. Heath and C. H. Romine. Parallel solution of triangular systems
on distributed-memory multiprocessors. SIAM Journal on Scientific
and Statistical Computing, 9(3):558–588, May 1988. ISSN 0196-5204.
doi:10.1137/0909037.

75. J. L. Hennessy andD. A. Patterson. Computer architecture: a quantitative
approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2nd edition, 1996. ISBN 1-55860-329-8.

76. M. Heroux. Mantevo. http://software.sandia.gov/mantevo/index.html,
December 2007. URL http://software.sandia.gov/mantevo/index.
html.

77. M. Heroux, R. Bartlett, V. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long,
R. Pawlowski, E. Phipps, A. Salinger, et al. An overview of trilinos. Tech-
nical Report SAND2003-2927, Sandia National Laboratories, 2003.

162

http://dx.doi.org/10.1145/331532.331589
http://dx.doi.org/10.1145/224170.224356
http://dx.doi.org/10.1145/800055.802046
http://dx.doi.org/10.1137/0909037
http://software.sandia.gov/mantevo/index.html
http://software.sandia.gov/mantevo/index.html

78. W. D. Hillis and L. W. Tucker. The CM-5 connection machine: a scalable
supercomputer. Communications of the ACM, 36(11):31–40, 1993. ISSN
0001-0782. doi:10.1145/163359.163361.

79. M.Holliday andM. Stumm. Performance evaluation of hierarchical ring-
based shared memory multiprocessors. IEEE Transactions on Comput-
ers, 43(1):52–67, 1994. ISSN 0018-9340. doi:10.1109/12.250609.

80. C. Holt, J. P. Singh, and J. L. Hennessy. Application and architectural bot-
tlenecks in large scale distributed sharedmemorymachines. In ISCA ’96:
Proceedings of the 23rd annual international symposium on Computer
architecture, pages 134–145, New York, NY, USA, 1996. ACM Press. ISBN
0-89791-786-3. doi:10.1145/232973.232988.

81. G. J. Holzmann. The Spin Model Checker: Primer and Reference Manual.
Addison-Wesley, Boston, 2004. ISBN 0321228626 9780321228628.

82. R. A. Iannucci, G. R. Gao, R. H. Halstead, Jr., and B. J. Smith. Mul-
tithreaded Computer Architecture: A Summary of the State of the Art.
Kluwer Academic Publishers, August 1994.

83. IEEEStd 1003.1-1990: PortableOperating Systems Interface (POSIX.1). In-
stitute of Electrical and Electronics Engineers, 1990.

84. Intel® Threading Building Blocks. Intel Corporation, 1.10 edition,
2008. URL http://softwarecommunity.intel.com/isn/downloads/
softwareproducts/pdfs/301114.pdf.

85. M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distrib-
uted data-parallel programs from sequential building blocks. In EuroSys
’07: Proceedings of the 2ndACMSIGOPS/EuroSys EuropeanConference on
Computer Systems, pages 59–72, New York, NY, USA, 2007. ACM Press.
ISBN 978-1-59593-636-3. doi:10.1145/1272996.1273005.

86. D. Iseminger. Microsoft WIN32 Developer’s Reference Library. Microsoft
Press, Redmond, WA, USA, 1999. ISBN 0735608164.

87. A. Jannesari andW. F. Tichy. On-the-fly race detection inmulti-threaded
programs. In PADTAD ’08: Proceedings of the 6th workshop on Parallel
anddistributed systems, pages 1–10,NewYork,NY,USA, 2008. ACM. ISBN
978-1-60558-052-4. doi:10.1145/1390841.1390847.

88. S. Jenks and J.-L. Gaudiot. An evaluation of threadmigration for exploit-
ing distributed array locality. InHPCS ’02: Proceedings of the 16th Annual
International Symposium on High Performance Computing Systems and

163

http://dx.doi.org/10.1145/163359.163361
http://dx.doi.org/10.1109/12.250609
http://dx.doi.org/10.1145/232973.232988
http://softwarecommunity.intel.com/isn/downloads/softwareproducts/pdfs/301114.pdf
http://softwarecommunity.intel.com/isn/downloads/softwareproducts/pdfs/301114.pdf
http://dx.doi.org/10.1145/1272996.1273005
http://dx.doi.org/10.1145/1390841.1390847

Applications, page 190, Washington, DC, USA, 2002. IEEE Computer So-
ciety. ISBN 0-7695-1626-2.

89. M. Jeon and D. Kim. Parallel merge sort with load balancing. Interna-
tional Journal of Parallel Programming, 31(1):21–33, February 2003. ISSN
0885-7458. doi:10.1023/A:1021734202931.

90. D. Jiang, B. O’Kelley, X. Yu, S. Kumar, A. Bilas, and J. P. Singh. Applica-
tion scaling under shared virtual memory on a cluster of SMPs. In ICS
’99: Proceedings of the 13th international conference on Supercomputing,
pages 165–174, New York, NY, USA, 1999. ACM Press. ISBN 1-58113-164-
X. doi:10.1145/305138.305190.

91. T. Johnson. Designing a distributed queue. In SPDP ’95: Proceedings
of the 7th IEEE Symposium on Parallel and Distributed Processing, pages
304–311, Washington, DC, USA, 1995. IEEE Computer Society. ISBN 0-
8186-7195-5.

92. T. Johnson and U. Nawathe. An 8-core, 64-thread, 64-bit power efficient
Sparc soc (Niagara2). In ISPD ’07: Proceedings of the 2007 International
SymposiumonPhysicalDesign, pages 2–2,NewYork,NY,USA, 2007. ACM
Press. ISBN 978-1-59593-613-4. doi:10.1145/1231996.1232000.

93. Y. Kang, M. W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik, and
J. Torrellas. FlexRAM: Toward an advanced intelligent memory system.
In Proceedings of the 1999 IEEE International Conference on Computer
Design, pages 192–201, Washington, DC, USA, October 1999. IEEE Com-
puter Society. ISBN 0-7695-0406-X. URL http://citeseer.ist.psu.
edu/kang99flexram.html.

94. J. C. d. Kergommeaux and B. d. O. Stein. Pajé: An extensible environ-
ment for visualizing multi-threaded programs executions. In Euro-Par
’00: Proceedings from the 6th International Euro-Par Conference on Par-
allel Processing, LectureNotes inComputer Science, pages 133–140, Lon-
don, UK, September 2000. Springer-Verlag. ISBN 978-3-540-67956-1.
doi:10.1007/3-540-44520-X_17.

95. T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner. One
level storage system. IRE Transactions on Electronic Computers, EC-11
(2):223–235, April 1962.

96. A. Kleen. An NUMA API for Linux. http://halobates.de/numaapi3.pdf,
August 2004.

164

http://dx.doi.org/10.1023/A:1021734202931
http://dx.doi.org/10.1145/305138.305190
http://dx.doi.org/10.1145/1231996.1232000
http://citeseer.ist.psu.edu/kang99flexram.html
http://citeseer.ist.psu.edu/kang99flexram.html
http://dx.doi.org/10.1007/3-540-44520-X_17

97. K. R. Koch, R. S. Baker, and R. E. Alcouffe. Solution of the first-order form
of the 3-d discrete ordinates equation on a massively parallel processor.
Transactions of the American Nuclear Society, 65(198), 1992.

98. P.M. Kogge. The EXECUBE approach tomassively parallel processing. In
Proceedings of the 1994 International Conference on Parallel Processing,
pages 77–84, Chicago, IL, August 1994.

99. P. M. Kogge, S. Bass, J. B. Brockman, D. Chen, and E. Sha. Pursuing a
petaflop: Point designs for 100 TF computers using PIM technologies. In
Proceedings of the 1996 Frontiers ofMassively Parallel Computation Sym-
posium, 1996.

100. P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way multi-
threaded sparc processor. IEEE Micro, 25(2):21–29, 2005. ISSN 0272-
1732. doi:10.1109/MM.2005.35.

101. J. S. Kowalik, editor.OnParallelMIMDcomputation: HEP supercomputer
and its applications, Cambridge,MA,USA, 1985.Massachusetts Institute
of Technology. ISBN 0-262-11101-2.

102. L. Lamport. Time, clocks, and the ordering of events in a distributed sys-
tem. Communications of the ACM, 21(7):558–565, 1978. ISSN 0001-0782.
doi:10.1145/359545.359563.

103. L. Lamport. The parallel execution of DO loops. Communications of the
ACM, 17(2):83–93, 1974. ISSN 0001-0782. doi:10.1145/360827.360844.

104. D. H. Lawrie. Access and alignment of data in an array processor. IEEE
Transactions on Computers, C-24:1145–1155, December 1975.

105. T. J. LeBlanc, J. M. Mellor-Crummey, and R. J. Fowler. Analyzing parallel
program executions using multiple views. J. Parallel Distrib. Comput., 9
(2):203–217, 1990. ISSN 0743-7315. doi:10.1016/0743-7315(90)90046-R.

106. K. Li and P. Hudak. Memory coherence in shared virtual memory sys-
tems. In PODC ’86: Proceedings of the fifth annual ACM symposium on
Principles of distributed computing, pages 229–239, New York, NY, USA,
1986. ACM Press. ISBN 0-89791-198-9. doi:10.1145/10590.10610.

107. D. C. Lin, P. W. Dymond, and X. Deng. Parallel merge sort on concurrent-
read owner-write pram. In Euro-Par ’97: Proceedings from the Third In-
ternational Euro-Par Conference on Parallel Processing, pages 379–383,
London, UK, 1997. Springer-Verlag. ISBN 3-540-63440-1.

165

http://dx.doi.org/10.1109/MM.2005.35
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1145/360827.360844
http://dx.doi.org/10.1016/0743-7315(90)90046-R
http://dx.doi.org/10.1145/10590.10610

108. L. B. Linden. Parallel program visualization using ParVis. Parallel Com-
puter Systems: Performance Instrumentation and Visualization, pages
157–187, 1990. doi:10.1145/100215.100265.

109. M. J. Litzkow,M. Livny, andM.W.Mutka. Condor - a hunter of idle work-
stations. InProceedings of the 8th International Conference of Distributed
Computing Systems, pages 104–111. IEEE Computer Society Press, June
1988. ISBN 0-8186-0865-X. doi:10.1109/DCS.1988.12507.

110. C. D. Locke, T. J. Mesler, and D. R. Vogel. Replacing passive tasks with
ada9x protected records. Ada Letters, XIII(2):91–96, 1993. ISSN 1094-
3641. doi:10.1145/152827.152834.

111. K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, andM. Horowitz. Smart
memories: a modular reconfigurable architecture. In ISCA ’00: Proceed-
ings of the 27th annual international symposium on Computer architec-
ture, pages 161–171, New York, NY, USA, 2000. ACMPress. ISBN 1-58113-
232-8. doi:10.1145/339647.339673.

112. A. D. Malony and D. A. Reed. Visualizing parallel computer system per-
formance, pages 59–90. ACM, New York, NY, 1989. ISBN 0-201-50390-5.
doi:10.1145/75705.75709.

113. U. Manber. On maintaining dynamic information in a concurrent envi-
ronment. In STOC ’84: Proceedings of the sixteenth annual ACM sympo-
sium on Theory of computing, pages 273–278, New York, NY, USA, 1984.
ACM. ISBN 0-89791-133-4. doi:10.1145/800057.808691.

114. X. Martorell, J. Labarta, N. Navarro, and E. Ayguade. A library imple-
mentation of the nano-threads programming model. In Euro-Par, vol-
ume 2, pages 644–649, 1996. URL http://citeseer.ist.psu.edu/
martorell96library.html.

115. S. A. McKee. Reflections on the memory wall. In Proceedings of the 1st
Conference on Computing Frontiers, page 162, New York, NY, USA, 2004.
CF ’04, ACM Press. ISBN 1-58113-741-9. doi:10.1145/977091.977115.

116. A. Meyer and J. G. Riecke. Continuations may be unreasonable. In LFP
’88: Proceedings of the 1988 ACMConference on LISP and Functional Pro-
gramming, pages 63–71, New York, NY, USA, 1988. ACM Press. ISBN 0-
89791-273-X. doi:10.1145/62678.62685.

117. M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking
and blocking concurrent queue algorithms. In PODC ’96: Proceedings of

166

http://dx.doi.org/10.1145/100215.100265
http://dx.doi.org/10.1109/DCS.1988.12507
http://dx.doi.org/10.1145/152827.152834
http://dx.doi.org/10.1145/339647.339673
http://dx.doi.org/10.1145/75705.75709
http://dx.doi.org/10.1145/800057.808691
http://citeseer.ist.psu.edu/martorell96library.html
http://citeseer.ist.psu.edu/martorell96library.html
http://dx.doi.org/10.1145/977091.977115
http://dx.doi.org/10.1145/62678.62685

the fifteenthannualACMsymposiumonPrinciples of distributed comput-
ing, pages 267–275, New York, NY, USA, 1996. ACM. ISBN 0-89791-800-2.
doi:10.1145/248052.248106.

118. S. W.Moore. Multithreaded Processor Design. Kluwer Academic Publish-
ers, June 1996.

119. M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill, B. Liblit, M. M.
Swift, and D. A. Wood. Supporting nested transactional memory in
logtm. ACM SIGPLAN Notices, 41(11):359–370, 2006. ISSN 0362-1340.
doi:10.1145/1168918.1168902.

120. C. Moretti, J. Bulosan, D. Thain, and P. Flynn. All-pairs: An abstrac-
tion for data intensive cloud computing. In IPDPS ’08: Proceedings of
the 22nd International Symposium on Parallel and Distributed Process-
ing. IEEE Computer Society Press, April 2008. ISBN 978-1-4244-1693-6.
doi:10.1109/IPDPS.2008.4536311.

121. J. P. Morrison. Data responsive modular, interleaved task programming
system. Technical Disclosure Bulletin 8, IBM, January 1971.

122. R. C.Murphy. Travelling Threads: ANewMultithreaded ExecutionModel.
PhD thesis, University of Notre Dame, Notre Dame, IN, USA, June 2006.

123. R. C. Murphy, P. M. Kogge, and A. F. Rodrigues. The characterization of
data intensive memory workloads on distributed PIM systems. Lecture
Notes in Computer Science, 2107:85–??, 2001. URL http://citeseer.
ist.psu.edu/murphy00characterization.html.

124. W. E. Nagel, A. Arnold, M. Weber, and K. Solchenbach. VAMPIR: Visual-
ization and analysis ofMPI resources. Supercomputer, 12(1):69–80, 1996.

125. C. Natarajan, S. Sharma, and R. K. Iyer. Measurement-based charac-
terization of global memory and network contention, operating system
and parallelization overheads. In ISCA ’94: Proceedings of the 21ST an-
nual international symposium on Computer architecture, pages 71–80,
Los Alamitos, CA,USA, 1994. IEEEComputer Society Press. ISBN 0-8186-
5510-0. doi:10.1145/191995.192018.

126. NeoMagic. Neomagic products, 2001. URL http://www.neomagic.com.

127. N. Nethercote and J. Seward. Valgrind: a framework for heavyweight dy-
namic binary instrumentation. In PLDI ’07: Proceedings of the 2007 ACM
SIGPLAN conference on Programming language design and implementa-
tion, pages 89–100, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-
633-2. doi:10.1145/1250734.1250746.

167

http://dx.doi.org/10.1145/248052.248106
http://dx.doi.org/10.1145/1168918.1168902
http://dx.doi.org/10.1109/IPDPS.2008.4536311
http://citeseer.ist.psu.edu/murphy00characterization.html
http://citeseer.ist.psu.edu/murphy00characterization.html
http://dx.doi.org/10.1145/191995.192018
http://www.neomagic.com
http://dx.doi.org/10.1145/1250734.1250746

128. J. Nieplocha and B. Carpenter. ARMCI: A portable remote memory copy
library for distributed array libraries and compiler run-time systems. In
Proceedings of the 11 IPPS/SPDP’99 Workshops Held in Conjunction with
the 13th International Parallel Processing Symposium and 10th Sympo-
siumonParallel andDistributed Processing, pages 533–546, London, UK,
1999. Springer-Verlag. ISBN 3-540-65831-9.

129. J. Nieplocha, M. Krishnan, B. Palmer, V. Tipparaju, and J. Ju. The Global
Arrays User’s Manual, 2006.

130. J. Nieplocha, B. Palmer, V. Tipparaju,M. Krishnan, H. Trease, and E. Apra.
Advances, applications and performance of the global arrays shared
memory programming toolkit. International Journal of High Perfor-
mance Computing Applications, 20(2):203–231, 2006.

131. J. Nieplocha, V. Tipparaju, M. Krishnan, and D. K. Panda. High perfor-
mance remotememoryaccess communication: Thearmci approach. In-
ternational Journal of High Performance Computing Applications, 20(2):
233–253, 2006. ISSN 1094-3420. doi:10.1177/1094342006064504.

132. D. S. Nikolopoulos, T. S. Papatheodorou, C. D. Polychronopoulos,
J. Labarta, and D. Ayguadé. Is data distribution necessary in openmp?
In Supercomputing ’00: Proceedings of the 2000 ACM/IEEE conference on
Supercomputing (CDROM), page 47, Washington, DC, USA, 2000. IEEE
Computer Society. ISBN 0-7803-9802-5.

133. D. S. Nikolopoulos, T. S. Papatheodorou, C. D. Polychronopoulos,
J. Labarta, and E. Ayguadé. Leveraging transparent data distribution in
OpenMP via user-level dynamic page migration. In ISHPC ’00: Proceed-
ings of the Third International Symposium on High Performance Com-
puting, pages 415–427, London, UK, 2000. Springer-Verlag. ISBN 3-540-
41128-3.

134. R. W. Numrich and J. Reid. Co-array fortran for parallel program-
ming. SIGPLAN Fortran Forum, 17(2):1–31, 1998. ISSN 1061-7264.
doi:10.1145/289918.289920.

135. Y. Nunomura, T. Shimizu, and O. Tomisawa. M32R/D-integrating dram
and microprocessor. IEEE Micro, 17(6):40–48, 1997. ISSN 0272-1732.
doi:10.1109/40.641595.

136. TheOpenGroupTechnical StandardBase Specifications, Issue 7 (POSIX.1-
2008). The Open Group, January 2008.

168

http://dx.doi.org/10.1177/1094342006064504
http://dx.doi.org/10.1145/289918.289920
http://dx.doi.org/10.1109/40.641595

137. OpenMP Application Program Interface. OpenMP Architecture Review
Board, 2.5 edition, May 2008.

138. M. Oskin, F. T. Chong, and T. Sherwood. Active pages: A computation
model for intelligent memory. In ISCA ’98: Proceedings of the 25th An-
nual International SymposiumonComputerArchitecture, pages 192–203,
Washington, DC, USA, 1998. IEEE Computer Society. ISBN 0-8186-8491-
7. doi:10.1145/279358.279387.

139. L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation
ranking: Bringing order to the web. Technical report, Stanford Digital
Library Technologies Project, 1998.

140. D. A. Patterson and J. L. Hennessy. Computer organization & design:
the hardware/software interface. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1993. ISBN 1-55860-281-X.

141. D. A. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick. A case for intelligent ram. IEEE
Micro, 17(2):34–44, 1997. ISSN 0272-1732. doi:10.1109/40.592312.

142. J. Perdue. Predicting performance on SMPs. a case study: The SGI power
challenge. In IPDPS ’00: Proceedings of the 14th International Symposium
on Parallel and Distributed Processing, page 729, Washington, DC, USA,
2000. IEEE Computer Society. ISBN 0-7695-0574-0.

143. E. Pietriga. Zgrviewer, a graphviz/dot viewer.
http://zvtm.sourceforge.net/zgrviewer.html, April 2009.

144. W.H. Press, B. P. Flannery, S. A. Teukolsky, andW. T. Vetterling. Numerical
Recipes in FORTRAN: The Art of Scientific Computing, chapter 2, pages
63–82. Cambridge University Press, Cambridge, England, 2nd edition,
September 1992.

145. Python. Stackless python. http://www.stackless.org, January 2008.

146. J. Qin, K. Y. Chan, and P. Manneback. Performance analysis in parallel
triangular solver. In ICAPP ’96: Proceedings of the Second International
Conference on Algorithms and Architectures for Parallel Processing, pages
405–412, June 1996. doi:10.1109/ICAPP.1996.562902.

147. S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. López-Lagunas, P. R.
Mattson, and J. D. Owens. A bandwidth-efficient architecture for media
processing. InMICRO 31: Proceedings of the 31st annual ACM/IEEE in-
ternational symposium on Microarchitecture, pages 3–13, Los Alamitos,
CA, USA, 1998. IEEE Computer Society Press. ISBN 1-58113-016-3.

169

http://dx.doi.org/10.1145/279358.279387
http://dx.doi.org/10.1109/40.592312
http://dx.doi.org/10.1109/ICAPP.1996.562902

148. A. F. Rodrigues, R. C. Murphy, P. M. Kogge, and K. D. Underwood. The
structural simulation toolkit: Exploring novel architectures. In Proceed-
ings of the 2006 ACM/IEEE Conference on Supercomputing, page 157,
New York, NY, USA, 2006. SC ’06, ACM Press. ISBN 0-7695-2700-0.
doi:10.1145.1188455.1188618.

149. S. Rosen. Electronic computers: A historical survey. ACM Computing
Surveys, 1(1):7–36, 1969. ISSN 0360-0300. doi:10.1145/356540.356543.

150. M. Sagiv, T. Reps, and R.Wilhelm. Parametric shape analysis via 3-valued
logic. ACM Transactions on Programming Languages and Systems, 24(3):
217–298, 2002. ISSN 0164-0925. doi:10.1145/514188.514190.

151. S. Saini and H. D. Simon. Applications performance under OSF/1 AD
and SUNMOS on Intel Paragon XP/S-15. In Supercomputing ’94: Pro-
ceedings of the 1994 ACM/IEEE conference on Supercomputing, pages
580–589, New York, NY, USA, 1994. ACM Press. ISBN 0-8186-6605-6.
doi:10.1145/602770.602868.

152. A. Saulsbury, F. Pong, and A. Nowatzyk. Missing the memory wall: The
case for processor/memory integration. In International Symposium on
Computer Architecture, May 1996.

153. S. E. Sevcik. An analysis of uses of coroutines. Dissertation, The Univer-
sity of North Carolina at Chapel Hill, 1976.

154. N. Shavit and D. Touitou. Software transactional memory. In PODC ’95:
Proceedings of the 14th Annual ACM Symposium on Principles of Distrib-
uted Computing, pages 204–213, New York, NY, USA, 1995. ACM Press.
ISBN 0-89791-710-3. doi:10.1145/224964.224987.

155. Y. Shiloach andU. Vishkin. An o(n log n) parallel connectivity algorithm.
Journal of Algorithms, 3(1):57–67, 1982.

156. J. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost Graph Library: User Guide
and ReferenceManual. Addison-Wesley, Boston,MA, USA, 2002. ISBN 0-
201-72914-8.

157. A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Concepts.
JohnWiley & Sons, Inc., 6 edition, 2003. ISBN 0-471-25060-0.

158. J. P. Singh, E. Rothberg, and A. Gupta. Modeling communication in par-
allel algorithms: A fruitful interaction between theory and systems? In
SPAA ’94: Proceedings of the sixth annual ACM symposium on Parallel
algorithms and architectures, pages 189–199, New York, NY, USA, 1994.
ACM Press. ISBN 0-89791-671-9. doi:10.1145/181014.181329.

170

http://dx.doi.org/10.1145.1188455.1188618
http://dx.doi.org/10.1145/356540.356543
http://dx.doi.org/10.1145/514188.514190
http://dx.doi.org/10.1145/602770.602868
http://dx.doi.org/10.1145/224964.224987
http://dx.doi.org/10.1145/181014.181329

159. A. Sivasubramaniam, A. Singla, U. Ramachandran, and
H. Venkateswaran. An approach to scalability study of shared memory
parallel systems. In SIGMETRICS ’94: Proceedings of the 1994 ACM
SIGMETRICS conference on Measurement and modeling of computer
systems, pages 171–180, New York, NY, USA, 1994. ACM Press. ISBN
0-89791-659-X. doi:10.1145/183018.183038.

160. D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions and answers
about BSP. Scientific Programming, 6(3):249–274, 1997. ISSN 1058-9244.

161. T. F. Smith and M. S. Waterman. Identification of common molecular
subsequences. Journal of Molecular Biology, 147(1):195–197, 1981.

162. B. So, M. W. Hall, and H. E. Ziegler. Custom data layout for memory par-
allelism. InCGO ’04: Proceedings of the international symposiumonCode
generationandoptimization, page 291,Washington,DC,USA, 2004. IEEE
Computer Society. ISBN 0-7695-2102-9.

163. I. Software. Rationalpurify. http://www.ibm.com/software/awdtools/purify/,
April 2009.

164. J. T. Stasko. The PARADE environment for visualizing parallel program
executions: Aprogress report. Technical ReportGIT-GVU-95-03, Georgia
Institute of Technology, Atlanta, GA, January 1995.

165. Q. F. Stout, D. L. De Zeeuw, T. I. Gombosi, C. P. T. Groth, H. G. Marshall,
and K. G. Powell. Adaptive blocks: A high performance data structure.
In Supercomputing ’97: Proceedings of the 1997 ACM/IEEE conference on
Supercomputing (CDROM), pages 1–10, New York, NY, USA, 1997. ACM
Press. ISBN 0-89791-985-8. doi:10.1145/509593.509650.

166. W. T. Sullivan, III, D. Werthimer, S. Bowyer, J. Cobb, D. Gedye, and D. An-
derson. A newmajor SETI project based on project SERENDIP data and
100,000 personal computers. In C. Batalli Cosmovici, S. Bowyer, and
D. Werthimer, editors, IAU Colloquim 161: Astronomical and Biochem-
ical Origins and the Search for Life in the Universe, page 729, Bologna,
Italy, January 1997. Editrice Compositori.

167. Memory and Thread Placement OptimizationDeveloper’s Guide. SunMi-
crosystems, Inc., Santa Clara, CA, June 2007. URL http://dlc.sun.com/
osol/docs/content/MTPODG/docinfo.html.

168. F. Szelényi and W. E. Nagel. A comparison of parallel processing on Cray
X-MPand IBM3090VFmultiprocessors. In ICS ’89: Proceedings of the 3rd
international conference on Supercomputing, pages 271–282, New York,
NY, USA, 1989. ACM. ISBN 0-89791-309-4. doi:10.1145/318789.318819.

171

http://dx.doi.org/10.1145/183018.183038
http://dx.doi.org/10.1145/509593.509650
http://dlc.sun.com/osol/docs/content/MTPODG/docinfo.html
http://dlc.sun.com/osol/docs/content/MTPODG/docinfo.html
http://dx.doi.org/10.1145/318789.318819

169. J. Tao, W. Karl, and M. Schulz. Memory access behavior analysis of
NUMA-based sharedmemoryprograms, 2001. URLciteseer.ist.psu.
edu/tao01memory.html.

170. J. Tao, W. Karl, and M. Schulz. Using simulation to understand the data
layout of programs, 2001. URL citeseer.ist.psu.edu/tao01using.
html.

171. O. M. Team. Portable linux processor affinity. http://www.open-
mpi.org/projects/plpa/, March 2009.

172. O. TemamandW. Jalby. Characterizing the behavior of sparse algorithms
on caches. In Supercomputing ’92: Proceedings of the 1992 ACM/IEEE
conference on Supercomputing, pages 578–587, Los Alamitos, CA, USA,
1992. IEEE Computer Society Press. ISBN 0-8186-2630-5.

173. O. Temam, E. D. Granston, and W. Jalby. To copy or not to copy: A
compile-time technique for assessingwhen data copying should be used
to eliminate cache conflicts. In Supercomputing, pages 410–419, 1993.
URL http://citeseer.ist.psu.edu/temam93to.html.

174. O. Temam, C. Fricker, and W. Jalby. Cache interference phenom-
ena. In SIGMETRICS ’94: Proceedings of the 1994 ACM SIGMETRICS
conference on Measurement and modeling of computer systems, pages
261–271, New York, NY, USA, 1994. ACM Press. ISBN 0-89791-659-X.
doi:10.1145/183018.183047.

175. D. Thain, T. Tannenbaum, and M. Livny. Condor and the grid. In
F. Berman, G. Fox, and A. J. G. Hey, editors, Grid Computing: Making
the Global Infrastructure a Reality, chapter 11, pages 299–335. JohnWiley
& Sons, Inc., 2003.

176. M. R. Thistle and B. J. Smith. A processor architecture for Horizon. In
Proceedings of the 1988 ACM/IEEE Conference on Supercomputing, vol-
ume 1, pages 35–41, Los Alamitos, CA, USA, 1988. SC ’88, IEEE Computer
Society Press. ISBN 0-8186-0882-X. doi:10.1109/SUPERC.1988.44632.

177. R. F. Van der Wijngaart, S. R. Sarukkai, and P. Mehra. Analysis and op-
timization of software pipeline performance onMIMD parallel comput-
ers. Journal of Parallel and Distributed Computing, 38(1):37–50, October
1996. ISSN 0743-7315. doi:10.1006/jpdc.1996.0127.

178. V. R. Volkman. Threads for windows. Windows/DOS Developer’s Journal,
4(9):50–54, 1993. ISSN 1059-2407.

172

citeseer.ist.psu.edu/tao01memory.html
citeseer.ist.psu.edu/tao01memory.html
citeseer.ist.psu.edu/tao01using.html
citeseer.ist.psu.edu/tao01using.html
http://citeseer.ist.psu.edu/temam93to.html
http://dx.doi.org/10.1145/183018.183047
http://dx.doi.org/10.1109/SUPERC.1988.44632
http://dx.doi.org/10.1006/jpdc.1996.0127

179. E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,
M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal.
Baring it all to software: Raw machines. Computer, 30(9):86–93, 1997.
ISSN 0018-9162. doi:10.1109/2.612254.

180. K. B. Wheeler and R. C. Murphy. Lightweight threading for architectural
design research. In CSRI Summer Proceedings, August 2007.

181. K. B. Wheeler and D. Thain. Visualizing massively multithreaded appli-
cations with threadscope. Concurrency and Computation: Practice & Ex-
perience, 2009.

182. K. B.Wheeler, R. C.Murphy, andD. Thain. Qthreads: AnAPI for program-
ming with millions of lightweight threads. In IPDPS ’08: Proceedings of
the 22nd International Symposium on Parallel and Distributed Process-
ingProceedings of the 22nd IEEE International Parallel &Distributed Pro-
cessing Symposium, pages 1–8.MTAAP ’08, IEEEComputer Society Press,
April 2008. ISBN 978-1-4244-1693-6. doi:10.1109/IPDPS.2008.4536359.

183. W. A.Wulf and S. A. McKee. Hitting thememory wall: implications of the
obvious. SIGARCH Computer Architecture News, 23(1):20–24, 1995. ISSN
0163-5964. doi:10.1145/216585.216588.

184. L. Yi, C. Moretti, S. Emrich, K. Judd, and D. Thain. Harnessing
parallelism in multicore clusters with the all-pairs and wavefront ab-
stractions. In HPDC ’09: Proceedings of the 18th ACM International
Symposium on High Performance Distributed Computing, pages 1–10,
New York, NY, USA, 2009. ACM Press. ISBN 978-1-60558-587-1.
doi:10.1145/1551609.1551613.

185. Q. A. Zhao and J. T. Stasko. Visualizing the execution of threads-based
parallel programs. Technical Report GIT-GVU-95-01, Graphics, Visual-
ization, and Usability Center, Georgia Institute of Technology, Atlanta,
GA, January 1995.

186. Y. Zhao, J. Dobson, I. Foster, L. Moreau, and M. Wilde. A notation and
system for expressing and executing cleanly typed workflows on messy
scientific data. ACMSIGMODRecord, 34(3):37–43, 2005. ISSN0163-5808.
doi:10.1145/1084805.1084813.

This document was prepared & typeset with LATEX2ε, and formatted with
nddiss2ε classfile (v3.0[2005/07/27]) provided by Sameer Vijay.

173

http://dx.doi.org/10.1109/2.612254
http://dx.doi.org/10.1109/IPDPS.2008.4536359
http://dx.doi.org/10.1145/216585.216588
http://dx.doi.org/10.1145/1551609.1551613
http://dx.doi.org/10.1145/1084805.1084813

	FIGURES
	ACKNOWLEDGMENTS
	CHAPTER 1: INTRODUCTION
	Motivation
	Problem
	Contribution
	Approach and Outline

	CHAPTER 2: RELATED WORK
	Threading
	Threading Concepts
	Lightweight Threads

	Application Structure and Visualization
	Locality-Aware Data Structures
	Data & Memory Layout
	Locality Information
	Data Structures

	Application Behavior

	CHAPTER 3: QTHREADS: COMBINING LOCALITY AND LIGHTWEIGHT THREADING
	Introduction
	Background
	Qthreads
	Semantics
	Basic Thread Control and Locality
	Synchronization
	Threaded Loops and Utility Functions

	Performance
	Implementation Details
	Micro-benchmarks

	High Performance Computing Conjugate Gradient Benchmark
	Code Modifications
	Results

	Multi-Threaded Graph Library Benchmarks
	Qthread Implementation of ThreadStorm Intrinsics
	Graph Algorithms and Performance
	Breadth-First Search
	Connected Components
	PageRank

	Conclusions

	CHAPTER 4: VISUALIZING APPLICATION STRUCTURE WITH THREADSCOPE
	Introduction
	Methodology
	Tracing
	The Event Description
	Visual Representation

	Memory Access Patterns
	Improving Visual Clarity
	Object Condensing
	Memory Re-Use
	Condensing Structure with A Priori Knowledge

	Isolating Potential Problems
	Structural Threading Problems
	Deadlocks
	Race Conditions

	Graph-based Problem Isolation

	Parallel Computation/Communication Models
	Conclusion

	CHAPTER 5: EXPLOITING MACHINE TOPOLOGY WITH ADAPTIVE DISTRIBUTED DATASTRUCTURES
	Introduction
	Parallel Architectures
	Distributed Data Structures
	Distributed Memory Pool
	Design
	Benchmark
	Results

	Distributed Array
	Design
	Benchmarks
	Results

	Distributed Queue
	Design
	Benchmark
	Performance

	Conclusion

	CHAPTER 6: ADAPTIVE COMPUTATIONAL TEMPLATES
	Introduction
	Sorting
	A Parallel Partition Algorithm
	Performance
	Benchmark
	Results

	All-Pairs
	Design
	Performance
	Benchmark
	Results

	Wavefront
	Design
	Performance
	Benchmark
	Results

	Conclusion

	CHAPTER 7: CONCLUSION
	Recapitulation
	Future Work
	Programming Interface
	Debugging and Tuning
	Data Structures
	Computational Templates

	Postscript

	BIBLIOGRAPHY

