Integrating Containers into Workflows:
A Case Study Using Makeflow, Work Queue, and Docker

Chao Zheng and Douglas Thain
Department of Computer Science and Engineering, University of Notre Dame
{czheng2,dthain@nd.edu}

ABSTRACT

Workflows are a widely used abstraction for representing
large scientific applications and executing them on distributed
systems such as clusters, clouds, and grids. However, work-
flow systems have been largely silent on the question of pre-
cisely what environment each task in the workflow is expected
to run in. As a result, a workflow may run correctly in the
environment in which it was designed, but when moved to
another machine, is highly likely to fail due to differences in
the operating system, installed applications, available data,
and so forth. Lightweight container technology has recently
arisen as a potential solution to this problem, by providing
a well-defined execution environments at the operating sys-
tem level. In this paper, we consider how to best integrate
container technology into an existing workflow system, us-
ing Makeflow, Work Queue, and Docker as examples of cur-
rent technology. A brief performance study of Docker shows
very little overhead in CPU and I/0 performance, but sig-
nificant costs in creating and deleting containers. Taking
this into account, we describe four different methods of con-
necting containers to different points of the infrastructure,
and explain several methods of managing the container im-
ages that must be distributed to erecuting tasks. We explore
the performance of a large bioinformatics workload on a
Docker-enabled cluster, and observe the best configuration to
be locally-managed containers that are shared between mul-
tiple tasks.

1. INTRODUCTION

Workflows are a widely used abstraction for represent-
ing large scientific applications and executing them on dis-
tributed systems such as clusters, clouds, and grids. Broadly
speaking, a workflow is a graph of sequential tasks that are
joined together by the files that they create and consume.
The graph as a whole can be considered a single program
with a high degree of concurrency. Today, there exist a va-
riety of workflow systems that share common principles but
are tailored to serve distinct communities and use cases in-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

VIDC’15, June 15, 2015, Portland, Oregon, USA.

Copyright @ 2015 ACM 978-1-4503-3573-7/15/06 ...$15.00.

DOI: http://dx.doi.org/10.1145/2755979.2755984.

cluding HPC machines, commercial clouds, and wide area
distributed systems [16, 13, 14, 8, 7, 10, 12, 21].

Generally speaking, workflow systems have focused on
data interchange between tasks, while being largely silent
on the question of precisely what environment each task
is expected to run. That is, a given task depends upon the
presence of a particular operating system, software installa-
tion, network configuration, and so forth to run. Often, an
end user will construct a workflow on a particular system,
and then move it to another system only to discover that the
workflow structure works correctly, but the individual tasks
fail due to incompatibilities with the new system, resulting
in laborious troubleshooting.

Virtual machines (VM) have long been advocated as a
solution to the problem of provisioning a consistent environ-
ment. While this solution is effective, it imposes significant
costs in CPU and I/O performance, as well as moving and
instantiating virtual machine images [20, 15]. Lightweight
container technology has recently arisen as an alternative
to complete virtualization. The basic technology has been
present in Linux distributions for many years, and has re-
cently been standardized and adopted in the form of tools
such as Docker [3] and Rocket [1]. Instead of starting a
complete operating system on top of a host system, a con-
tainer shares a kernel with the host system, which largely
eliminates overheads, but maintains isolation between ap-
plications. This makes it possible to ship a relatively small
container that acts like a complete operating system but en-
capsulates only those files necessary to run an application.

This paper considers how to best integrate con-
tainer technology into workflow systems. As a run-
ning example, we consider the specific technologies of the
Makeflow [7] workflow system, the Work Queue [9] execution
system, and the Docker container system, but the general
principles apply across technologies. The design considera-
tions can be broken down into three categories: how to ex-
press the desired environment for a workflow and its tasks,
how and where to instantiate containers for each task, and
how to manage the movement and transformation of images.

Specifically, we examine four different methods of inte-
grating Docker with Makeflow and Work Queue. (1) Wrap-
ping each task at the workflow level, which is simple but
inefficient due to lack of information about image state.
(2) Running each worker inside a container, which elimi-
nates startup overheads, but exposes more of the system to
container overheads. (3) Running each task inside a con-
tainer, which limits the scope of the container, but increases
startup/shutdown events. (4) Running multiple compatible

D = File O = Task

Workflow

Releases tasks Schedules tasks

when ready.

Describes tasks,
dependencies,
and environment.

Master Node

Pool of Workers

and data on workers.

Task 1
Sandbox
Task 2
Sandbox

start task

Manage storage
and run tasks.

One Worker Node

Figure 1: System Architecture Before Containers

tasks inside one container, which minimizes startup/shut-
down events, but decreases isolation.

To evaluate these configurations, we execute a bioinfor-
matics workflow which consists of a large number of rel-
atively short tasks, which emphasizes the efficiency of con-
tainer startup and shutdown. The final configuration achieves
performance very close to that of a system without contain-
ers, if one is willing to sacrifice isolation between tasks. We
observe that this technique requires that the execution sys-
tem must be container-aware, rather than simply wrapping
each task with the desired container operations.

2. BACKGROUND

Figure 1 shows the architecture of Makeflow and Work
Queue before introducing container technology. While our
discussion focuses on these technologies, similar comments
apply to other workflow systems.

Makeflow is a command line workflow engine used to ex-
ecute data-intensive scientific applications on a variety of
distributed execution systems. The end user expresses a
workflow using a syntax similar to that of classic Make.
Each task in the Makefile is defined as a command line to
be executed, prefixed by the output files that it produces
and the input files that it requires. For example, to pro-
duce the file index from seq.fasta by running the command
bwa -index seq.fasta, one would write the following rule:

seq.fasta bwa
./bwa —index seq.fasta

index

The semantics of Makeflow are as follows. For each task to
be executed, a fresh sandbox directory will be created, the
input files will be copied into the sandbox, the command line
run, and then the output files moved out of the sandbox. No
other files apart from those mentioned as input dependencies
are guaranteed to be present, and so the end user must be
careful to mention all of the files needed by the command.
Note that, in the rule above, the application itself (bwa) is
mentioned as an input dependency. (In this way, Makeflow
is more strict than traditional Make.)

Given this generic statement of a workflow, Makeflow can
execute the same workflow across a variety of execution sys-
tems, including batch systems such as Condor, Torque, SGE,

and Work Queue, which is described below. Regardless of
the system in use, Makeflow is responsible for releasing and
tracking events in a transaction log.

Work Queue is a lightweight user-level execution engine
for distributed systems. The system consists of a master
library and a large number of worker processes that can be
deployed across multiple cluster, cloud, and grid infrastruc-
tures. The master exports an API that allows the user to
define tasks consisting of a command line to execute, a set
of input files, and a set of expected output files. The master
schedules tasks to run on remote workers.

The worker executes tasks as follows. As input files are
transmitted from the master, they are stored in a cache di-
rectory. For each task to be run, the worker creates a tem-
porary sandbox directory, links in the input files, runs the
command, and then copies the output files back to the cache
directory, where they await return to the master. In this
way, each task is given a fresh namespace that does not in-
terfere with other tasks. On a multicore machine, multiple
tasks may safely execute simultaneously. (As long as each
stays in its current working directory.)

Work Queue can be used by itself to build dynamic submit-
wait applications, but it is also available as an execution
option for Makeflow, such that each rule in the workflow is
submitted as a task for Work Queue. The implementation of
Work Queue is designed to provide precisely the execution
semantics expected by Makeflow. Because both Makeflow
and Work Queue require all files to be explicitly declared,
the combination can run without a shared filesystem.

3. EXECUTION ENVIRONMENTS

As described so far, Makeflow and Work Queue accurately
capture the data dependencies of a workload, but say noth-
ing about the environment in which a task should exe-
cuted. Including the program as an input dependency is
a good first start, but does not capture all of the shared
libraries, script interpreters, configuration files, and other
items on which it may depend. Ideally, the end user will
provision worker nodes that have exactly the same operat-
ing system, installed applications, and so forth.

Unfortunately, this is easier said than done. Our expe-
rience is that end users construct complex workflows in an

Pull from docker registry

Task 1

§>Q—‘D Sandbox
S

‘%
Doy .
"Oup;~aContainer

Task 2

Sandbox
launch
A st

5 7
e M0up;

% (link) (copy) .
Manage storage ey Ve ~ “ontainer
and run tasks. File
D D Cache
|

(a) Wrapper Script

Pull from docker registry

=
Task 1

% Sandbox
V%
oupralContainer

=
Task 2

?“Q@ Sandbox
launch
Stary tagy

.
(link) (COP)')M/‘XU\“’
Manage storage r ~ [Container
and run tasks. File
D D Cache
-

(c¢) Container in Worker

Launch Docker
* Daemon

e \
Task 1

Task 2
Sandbox

(link) (copy)

ﬂntainer

start task

Manage storage
and run tasks.

Y File

D D D Cache

Condor
Starter

- J

(b) Worker in Container

Pull from docker registry

Sandbox (" —) \

Grectory Task 1
2O ’l Sandbox

=
Task 2
Sandbox
b
(S N ’e,}{
J‘/Drep (link) (copy) st *?,;f
l¢,
Manage storage %y e ~ [ds&
and run tasks. ﬁ File
mount
D D Cache Container
N)

(d) Shared Container

Figure 2: Container Management Options

environment not of their own creation, such as a profession-
ally managed HPC center. In this situation, the user’s en-
vironment is a mix of a standard operating system, patches
and adjustments made by the staff, locally installed appli-
cations, and items from the user’s home directory. When
moving the application to another site, it is not at all obvi-
ous what components should be included with the workflow.
Should the user copy the executables, the libraries, the Perl
or Python interpreters, or perhaps even the entire home di-
rectory? It is difficult for the expert — much less the end
user — to know when to stop. (In previous work, we demon-
strated how automated means [19] can be used to observe
and capture dependencies, but this results in workflows that
are even more complex and difficult to modify.)

An alternate approach is to define the environment
explicitly when the workflow is created. Rather than ac-
cept the current environment as the default, the user would
be required to explicitly name an image that contains the
operating system, applications, and all other items needed
by the application. This image could be constructed by hand
by the user, but is more likely provided by administrators.
Once explicitly named, the image can easily be transported

along with the workflow. A single image might apply to all
tasks in the workflow, or might vary between tasks.

Lightweight containers are a promising operating-system
virtualization technology that could be used to deliver such
execution environments. Unlike virtual machines, containers
are implemented by mounting filesystems on top of an ex-
isting operating system kernel, largely eliminating the over-
heads found in traditional virtual machines. While the basic
technology behind containers has been available for decades,
the concept has recently seen considerable development in
the Linux community, combining the cgroups resource con-
trol framework and the unionfs filesystem management to
provide comprehensive isolation. Image management facili-
ties such as Docker [3] and Rocket [1] now make it relatively
easy to create, share, and deploy container images by name.
For example, this command:

docker run ubuntu bwa —index seq.fasta

results in the docker command line tool contacting the
dockerd server on the same machine to download the image
named ubuntu, create a running container, and then execute
the command bwa -index seq.fasta within that container.

However, the combination of these technologies is not as
simple as putting docker run ubuntu in front of every com-
mand, because the workflow data dependencies must be con-
nected to the executing image. To address this problem, we
must consider two different design questions. The first is
container management: namely, which component of the
system is responsible for configuring, deploying, and tear-
ing down containers. The second is image management:
namely, how the container images must be moved to the
(possibly thousands) of workers that comprise the system in
an efficient way. The remainder of this paper considers each
of these problems in detail.

4. CONTAINER MANAGEMENT

First, we consider four strategies for assigning the respon-
sibility of creating and tearing down containers within the
workflow system. Each of these methods has been imple-
mented and is evaluated below.

Base-Architecture. (Figure 1) The basic architecture
of Makeflow and Work Queue effectively uses a directory as
a placeholder for a container. For each task to be executed,
the input files are linked from the cache directory of the
worker into the task sandbox directory, the task is run within
the directory, and then the output files are copied back into
the worker’s cache for later use. This can be thought of as
a (very) lightweight container inasmuch as each task has an
assigned namespace, assuming each task is well behaved and
stays within its current working directory.

This method has the advantage that it is simple, requires
no special privileges, and imposes no overhead on the execu-
tion of the application. Of course, the only environment that
can be provided to the application is the operating system
in which the worker runs.

Wrapper-Script. (Figure 2(a)) The simplest step up
from the base architecture is to use a wrapper script to pro-
vision a container for each task. A small script can be writ-
ten which will contact the local dockerd, pull the desired
image to the execution host, run the desired task in the con-
tainer, then tear down the image. To simplify access to the
task’s files, the task sandbox directory is mounted into the
container as the task’s working directory, such that neither
the task nor the worker must change their behavior.

This method has the advantage that no change is nec-
essary to either Makeflow or Work Queue, and can be ap-
plied transparently by the end user. Each task will be iso-
lated from all other concurrent tasks. If necessary, different
tasks could execute in different environments. (In the com-
mon case that all tasks require the same environment, the
-wrapper command-line option to Makeflow can be used to
easily apply a single wrapper globally without modifying the
workflow itself.) However, as we show below, this method
imposes a container startup and shutdown cost on each task,
and does not give the distributed system visibility into the
location and movement of the (possibly large) images.

Worker-in-Container. (Figure 2(b)) An alternative ap-
proach is to simply take the entire worker itself and place it
into a container for the entire duration of the run. This re-
quires a small modification to the provisioning of the worker
itself, to pull the image and create the container. In fact,
the same wrapper script as above can be used, if the worker
itself is provisioned by an underlying system manager.

This approach succeeds in delivering the desired execution
environment to each task and avoids paying the startup and

shutdown costs for each task. In the common case where
all tasks in the workflow require the same environment, one
can easily imagine provisioning a number of workers in bulk
before the workflow execution. However, it does not provide
isolation between tasks, which all execute in a sandbox di-
rectory in the same container, so we must assume the same
degree of trust as in the base case. More subtly, the worker
itself must pay the costs of executing within the container,
such that there may be a penalty applied to the network
communication between master and worker, as well as in the
management of the local cache directory. Finally, this con-
figuration relies on the aufs filesystem, which is reported to
cause non-negligible overheads when using a container with
multiple layers and deep-nested filesystem structure.

Containers-in-Worker (Figure 2(c)) Another approach
is to modify the worker code itself to run each task within a
specified container. The effect of this is very similar to that
of the wrapper script, but with one important difference:
the worker itself now has some knowledge of the state of the
local dockerd and can execute more efficiently. Rather than
attempting to pull and transform images for each container
invocation, the worker can prepare the image once, and then
instantiate multiple containers from the same image.

This approach allows each task to provision a distinct con-
tainer and allows the worker itself to avoid container over-
heads, while still providing isolation between tasks. Further
the container image itself can becomes an input dependency
of the task, which allows for the scheduler to explicitly take
advantage of this information. For example, tasks can be
scheduled preferentially to nodes where the image has al-
ready been transferred and cached.

Shared-Container. (Figure 2(d)) Finally, we may at-
tempt to combine the benefits of multiple approaches by
allowing tasks to share the same container where possible.
In the Shared-Container approach, the worker is again re-
sponsible for creating and deleting containers, but will only
create one container for each desired environment. Contain-
ers are not removed when tasks complete, but remain in
place for the next (or concurrent) task to be placed inside.

This approach allows each task to run in different envi-
ronments, where needed, avoids the overhead of multiple
container creation, but does not provide isolation between
tasks beyond the base case. As with the previous case, it
also gives the scheduler visibility into image locations.

S. IMAGE MANAGEMENT

If we consider a large scale workflow application running
on thousands of workers, the cost of moving the environment
to each node can become a significant component of the cost,
depending on the form in which it is transferred and the
source of the transfer. There are three commonly used forms
for communicating an executable environment in Docker:

A dockerfile describes the entire procedure by which an
image is built, starting with the base operating system im-
age, adding software packages, and running arbitrary com-
mands until the desired result is achieved. Building an im-
age from a dockerfile is comparable to installing a new ma-
chine from scratch and could take anywhere from minutes
to hours, depending on the number of layers involved. How-
ever, a dockerfile is quite small (1KB or less) and is easily
transferred across the system.

A binary image is the result of executing a dockerfile,
and is the executable form of a container ready for activa-

tion, with all files laid out into a binary filesystem image in a
form that can be directly mounted and used. The image is a
binary object specific to the kernel filesystem in use and may
not be appropriate for portability or long term preservation.

A tarball is a more portable form of a binary container,
in that all the layers of the filesystem have been collapsed
into a tree of files and directories encoded in the standard
tar format. A tarball is much more suitable for sharing and
preservation, but must be unpacked and encoded back into
a binary image before it can be executed directly by Docker.
A tarball can be used directly by other technologies, such as
a chroot based sandbox.

By default, Docker encourages end users to create contain-
ers by pulling binary images from the global Docker Hub.
This would be the result of using the Wrapper-Script method
with reference to an image name. This method is quite use-
ful for sharing frequent-used container images over limited
number of computing nodes. But, when employing thou-
sands of workers for a single workflow, this could result in
extraordinary loads on the public network. Further, using
the central hub may be inappropriate for images with secu-
rity, copyright, or privacy concerns.

Another approach would be using the workflow system
to distribute the dockerfile itself, relying on the workers to
construct the desired images at runtime. This would dra-
matically reduce the network traffic from workers pulling
images, but would result in all workers duplicating the same
effort for minutes to hours to generate the same resulting
image. The effort would be better expended in one location
before allocating workers.

In the context of a large workflow on thousands of nodes,
the most appropriate solutions seems to be for the workflow
manager itself to build the desired environment image on
the submit machine, either by executing a dockerfile or by
pulling an image from a repository. Once generated, that
image can be exported from Docker as a portable tarball
and then included as an input dependency for each task. In
this way, the Work Queue scheduler has sufficient knowledge
to distribute the environment using the existing file transfer
mechanisms on the private network of the system, has much
larger network bandwidth than the public network. Further-
more, the container images can be cached on the individual
workers for later use.

Since there is currently a known bug in Docker that results
in a failure when containers are built from the same tarball
simultaneously. In the examples that follow, we rely on the
global Docker hub for images management, where they are
pulled and installed.

6. EVALUATION

We evaluated each of the configurations above by imple-
menting them as options within Makeflow and Work Queue,
then observed the performance of a large bioinformatics work-
flow on a Docker-enabled cluster. The cluster consisted of
twenty-four 8-core Intel Xeon E5620 CPUs each with 32GB
RAM, 12 2TB disks, 1Gb Ethernet, running Red Hat Enter-
prise Linux 6.5 with Linux kernel 2.6.32-504.3.3.e16.x86_64
and Docker 1.4.1.

Before evaluating the workflow as a whole, we performed
some basic micro-benchmarks on a single machine to eval-
uate the low level performance of the container technology.
We employed sysbench to measure CPU performance and
memory bandwidth, netperf to evaluate the performance of

4 r Delete Time 1

Create Time

Time (Seconds)
x

0
0 500 1000 1500 2000 2500 3000 3500 4000

Size of Image (MB)

Figure 3: Container Creation and Deletion

TCP throughput both on and off the machine and bonnie++
to evaluate local disk performance. We expected (and con-
firmed) that the CPU, memory, and network benchmarks
would all result in virtually indistinguishable performance
between the host and container, since the container mecha-
nism primarily affects the namespace of kernel objects and
not the direct access to machine resources.

However, based on previous reports, we expected to see
that the I/O performance within the container would take
a significant penalty due to the use of aufs. For example,
Felter [11] mention that aufs should be avoided due to
the overhead of metadata lookup in each layer of the union
filesystem. What we observed was more difficult to char-
acterize: generally, reads from aufs would see performance
similar to that of the host, while writes to aufs would be
sometimes be faster than the host, as changes were simply
queued up until a later docker commit which would flush
changes out. The overall effect was very inconsistent per-
formance, sometimes better and sometimes worse than the
host filesystem.

That said, aufs performance is less relevant in this set-
ting because three of our configurations relies on mounting a
sandbox directory from the host in order to access workflow
data. The performance of this mount was indistinguishable
from the host. The Worker-in-Container relies on aufs, but
the size of the input file and output file for each task are
around 10MB to 20MB. To access small files like this, the
difference of 1/O performance is negligible.

Where overheads were more clear was in the cost of cre-
ating and deleting containers at runtime. To evaluate this,
we created a base operating system image, and then pro-
gressively increased the size of the image by adding files.
We then measured the minimal container startup time by
executing docker run debian /bin/ls and then the time
to delete the image after the command completed. Fig-
ure 3 shows the average of ten startups and deletes at each
size. We were surprised to see that the startup time was
essentially constant with respect to the image size, but the
deletion time increased linearly with the image size. These
overheads have a significant effect on workflow executions,
depending on the container management strategy chosen.

To evaluate the overall system performance, we executed
a large bioinformatics workload in each of the five container
management configurations discussed above.

Commonly, there are three kinds of workflow, workflow
consists mainly of long-running tasks, one containes many

Input Standard
Sequence Sequence
30 GB 35 MB
split
8mins
Sequence
Index
30MB
subseql subseq2 | 4000 |subsegm subseqgn
30MB 30MB | e 30MB 30MB
[[[
bwa bwa bwa bwa
8secs 8secs 8secs 8secs

outl out2 4000 outm
23MB | T 23MB

outn
23MB

result
20 GB

Figure 4: BWA Workflow

short-running tasks and the one include both type of tasks.
For long-running tasks, in comparison to the overall execu-
tion time, environment setting up time is negligible. While
the workflow has many short tasks gains concrete benefits
from shorter environment setting up time.

In order to present the maximum level of speedup gain
from applying lightweight container technology, The selected
workload is a parallelization of the widely used Burrows-
Wheeler Alignment (BWA) tool, which consists of 4082 short-
running tasks. BWA is a genomic search tool which looks for
instances of query strings within a large reference database

by applying the applies the Burrows-Wheeler Transform (BWT)

algorithm. The original tool is a standalone sequential pro-
gram which accepts a list of queries and a reference database.

The structure of the workflow is shown in Figure 4. An
initial task subsamples a 30GB input file into 4000 parts,
each of which is then fed into a separate instance of BWA
which searches for the queries in a shared reference database
of 30MB, producing results of approximately 23 MB each,
which are then joined into a single ouptut file which must
be brought back to the master.

The workload was run on a cluster, each task a single-core
process, such that up to 192 tasks (or containers) would run
simultaneously. Workers were deployed onto the cluster in
each of the five configurations described earlier, with Make-
flow running on the head node to coordinate the computa-
tion.

Figure 5 shows the results of each run, with each configu-
ration in a row. The first column gives the key details of the
total runtime, the average execution time of each task, and
the average transfer performance between the master and
the worker. The second column gives a histogram of indi-
vidual task execution times for the 4000 tasks of the work-
flow, while the third column gives a histogram of transfer
rate of individual file between the master and the worker to
support each task.

As expected, the Base-Architecture has the fastest over-
all execution time (25 min) and a compact distribution of
task execution times. The simplest extension, the Wrapper-
Script, has the worst performance of the five (38 min), pri-

marily because each task must independently pull an image,
execute the task, and then clean up the image when done.
The variation in task execution times is also much higher,
due to the interference between tasks managing images and
doing work. Worker-in-Container achieves faster and more
compact task execution times but still pays a penalty due
to overhead applied to the worker itself. Containers-in-
Worker shows a slightly worse performance because each
task must create and delete a container, but the worker han-
dles the image management. Finally, the Shared-Container
case achieves performance very close to that of the Base-
Architecture, because the containers are created once per
worker, and then shared among up to eight tasks simultane-
ously.

We included the file transfer histograms because we ex-
pected to see some variation in transfer performance, par-
ticularly in the case of the Worker-in-Container. However,
we do not see any differences significant enough to draw
conclusions.

As can be seen the selection of a strategy for managing
containers within a workflow has a significant impact upon
the bottom line, primarily due to the non-trivial expense
of booting and removing containers. A tradeoff must be
made between achieving complete isolation and maximum
performance.

7. RELATED WORK

There exist a large variety of workflow systems that share
similar principles while addressing the needs of different
user communities and use cases. Examples include DAG-
Man [13], Galaxy [14], Kepler [8] Pegasus [10], Swift [12],
and Taverna [21]. The general principles and tradeoffs con-
sidered in this paper could be applied to all of these systems.

Combining container technology with distributed system
is not a new idea. Core OS [2] as a lightweight Linux distri-
bution aims at providing infrastructure to clustered deploy-
ments, running all services and applications inside contain-
ers, which facilitate the security, reliability and scalability of
clusters. Other two popular platforms are Snappy ubuntu [6]
and RedHat Project Atomic [5]. Both platforms minimize
operating system level contents and automate the process
of deploying containers across multiple hosts. Google also
annouce the Kubernetes project [4], which enable the user
to manage a cluster of Linux containers as a single system.
These projects focuse on how to adopt container technology
on system level or how to coordinate containers accross clus-
ter environment. In our papers, we show the possibilities
to integrate container technology into existing cloud com-
puting framework, which exploit different ways of applying
container on framework level.

There are many ways to improve the performance of High
Performance Computing system whose main enabling tech-
nology is virtualization. By using hardware with incorporate
with virtualization technology, which reduces the latency
caused by virtualization [18]. Another way is to enable the
hypervisor to deal with the guest processing directly, which
eliminating the overheads for latency sensitive tasks [17].
By reducing the memory footprint in virtualized large-scale
parallel system, we can enhance the system performance, re-
liability and power [22]. All these strategies keep using the
traditional virtual machine technology. We try to exploit
the possibilities to integrate Lightweight container technol-
ogy to cloud computing framework, which achieves isolation

10000 : : : : 10000 T T T T T =
Basic Structure 1000 1000
Total exc time: 25mins P g
Task time: (8.28 +/- 2.52)secs g0 g
H* [
Transfer rate: (115 +/- 11)MB/s . R
1 1
0 10 20 30 40 50 0 20 40 60 80 100 120
Execution Time (s) Transfer Speed (MB/s)
10000 T T T T 10000 ¢ T T T T T T
Wrapper Script 1000 1000
Total exc time: 38mins " 4
Task time: (18.93 +/- 12.07)secs R g 1
H* =
Transfer rate: (114 +/- 13)MB/s . =
1 1
0 10 20 30 40 50 0 20 40 60 80 100 120
Execution Time (s) Transfer Speed (MB/s)
10000 T T T T 10000 F T T T T T T
Worker in Container 1000 1000
Total exc time: 30mins " 4
2 ks
Task time: (10.72 +/- 4.79)secs g o g
H* [
Transfer rate: (113 +/- 13)MB/s 0 =
1 1
0 10 20 30 40 50 0 20 40 60 80 100 120
Execution Time (s) Transfer Speed (MB/s)
10000 T T T T 10000 ¢ T T T T T 3
Container in Worker 1000 1000
Total exc time: 33mins P g
Task time: (11.89 +/- 3.17)secs g g 1
H* =
Transfer rate: (114 +/- 13)MB/s " =
1 1
0 10 20 30 40 50 0 20 40 60 80 100 120
Execution Time (s) Transfer Speed (MB/s)
10000 T T T T 10000 T T T T T =
Shared Container 1000 1000
Total exc time: 26mins P @
Task time: (8.37 +/- 2.54)secs g g 1
H* [
Transfer rate: (115 +/- 11)MB/s 0 0
1 1
0 10 20 30 40 50 0 20 40 60 80 100 120
Execution Time (s) Transfer Speed (MB/s)

Figure 5: Workflow Performance for Each Configuration
In each row of the table, details of the configuration, task execution time histogram and task transfer rate histogram are
presented. (1) for configuration details, total execution time, average execution time +/- standard deviation, average transfer
rate +/- standard deviation are given (2) for task execution time histogram, The frequencies of tasks execution time in different
time intervals are presented. The z-axis is the time intervals and the y-axis is the number of tasks in certain time interval.
(3) for task transfer rate histogram, we show the frequencies of tasks’ file transfer rate in different time intervals. The z-axis
is the time lapse and the y-azis show the number of tasks.

with much less overheads compare to traditional virtualiza-
tion technologies on cloud computing environment.

8. CONCLUSIONS

With the advent of container technology, many of the ben-
efits of traditional virtualization can be achieved at signif-
icantly lower cost. However, as we have shown, the costs
of instantiating and managing a large number of containers
can have a significant impact on workflows in a distributed
environment. We have demonstrated several techniques for
managing containers within a production workflow system
and evaluated the tradeoffs between performance, isolation,
and consistency. The results show that for large workloads
including thousands of tasks, launching and removing large
amount of containers cause notable overheads. The over-
heads can be eliminated by sharing containers across multi-
ple tasks in the cost of losing isolation for each task. More
broadly, an important lesson is that the management of con-
tainers is best done explicitly by the distributed system,
rather than simply leaving it to the user to invoke a con-
tainer from within each task. In future, we intend to develop
an advanced container management mechanism, which aims
to control the number of private and shared containers on
the cloud. We expect this mechanism can largely benefit
different workflows that have specified bias for isolation and
performance.

Acknowledgements

This work was supported by National Science Foundation
grant OCI-1148330 and the Department of Energy via sub-
contract to the University of Wisconsin 421K072.

9. REFERENCES

[1] CoreOS is building a container runtime, Rocket.
https://coreos.com/blog/rocket/, 2015.

[2] CoreOS is Linux for Massive Server Deployments.
https://coreos.com/, 2015.

[3] Docker project official website.
https://www.docker.com/, 2015.

[4] Kubernetes by Google. http://kubernetes.io/, 2015.

[5] Project Atomic. http://www.projectatomic.io/,
2015.

[6] Snappy Ubuntu Core.
http://developer.ubuntu.com/en/snappy/, 2015.

[7] M. Albrecht, P. Donnelly, P. Bui, and D. Thain.
Makeflow: A Portable Abstraction for Data Intensive
Computing on Clusters, Clouds, and Grids. In
Workshop on Scalable Workflow Enactment Engines
and Technologies (SWEET) at ACM SIGMOD, 2012.

[8] I. Altintas, C. Berkley, E. Jaeger, M. Jones,

B. Ludascher, and S. Mock. Kepler: an extensible
system for design and execution of scientific
workflows. In Scientific and Statistical Database
Management, 2004. Proceedings. 16th International
Conference on, pages 423-424. IEEE, 2004.

[9] P. Bui, D. Rajan, B. Abdul-Wahid, J. Izaguirre, and
D. Thain. Work Queue + Python: A Framework For
Scalable Scientific Ensemble Applications. In
Workshop on Python for High Performance and
Scientific Computing (PyHPC) at the ACM/IEEE
International Conference for High Performance

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

Computing, Networking, Storage, and Analysis
(Supercomputing) , 2011.

E. Deelman, K. Vahi, G. Juve, M. Rynge,

S. Callaghan, P. J. Maechling, R. Mayani, W. Chen,
R. F. da Silva, M. Livny, et al. Pegasus, a workflow
management system for science automation. Future
Generation Computer Systems, 2014.

W. Felter, A. Ferreira, R. Rajamony, and J. Rubio.
An updated performance comparison of virtual
machines and linux containers. technology, 28:32, 2014.
I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud
computing and grid computing 360-degree compared.
In Grid Computing Environments Workshop, 2008.
GCE’08, pages 1-10. Ieee, 2008.

J. Frey. Condor dagman: Handling inter-job
dependencies, 2002.

B. Giardine, C. Riemer, R. C. Hardison, R. Burhans,
L. Elnitski, P. Shah, Y. Zhang, D. Blankenberg,

I. Albert, J. Taylor, et al. Galaxy: a platform for
interactive large-scale genome analysis. Genome
research, 15(10):1451-1455, 2005.

N. Huber, M. von Quast, M. Hauck, and S. Kounev.
Evaluating and modeling virtualization performance
overhead for cloud environments. In International
Conference on Cloud Computing and Services Science
(CLOSER 2011), pages 563-573, Noordwijkerhout,
The Netherlands, May 2011.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from
sequential building blocks. ACM SIGOPS Operating
Systems Review, 41(3):59-72, 2007.

A. Nordal, A. Kvalnes, and D. Johansen.
Paravirtualizing tcp. In Proceedings of the 6th
international workshop on Virtualization Technologies
in Distributed Computing Date, pages 3—10. ACM,
2012.

H. N. Palit, X. Li, S. Lu, L. C. Larsen, and J. A.
Setia. Evaluating hardware-assisted virtualization for
deploying hpc-as-a-service. In Proceedings of the 7th
international workshop on Virtualization technologies
in distributed computing, pages 11-20. ACM, 2013.
C. Robinson and D. Thain. Automated Packaging of
Bioinformatics Workflows for Portability and
Durability Using Makeflow. In WORKS13, 2013.

M. Rosenblum and T. Garfinkel. Virtual machine
monitors: Current technology and future trends.
Computer, 38(5):39-47, 2005.

K. Wolstencroft, R. Haines, D. Fellows, A. Williams,
D. Withers, S. Owen, S. Soiland-Reyes, I. Dunlop,
A. Nenadic, P. Fisher, et al. The taverna workflow
suite: designing and executing workflows of web
services on the desktop, web or in the cloud. Nucleic
actids research, page gkt328, 2013.

L. Xia and P. A. Dinda. A case for tracking and
exploiting inter-node and intra-node memory content
sharing in virtualized large-scale parallel systems. In
Proceedings of the 6th international workshop on
Virtualization Technologies in Distributed Computing
Date, pages 11-18. ACM, 2012.

