
1

Abstractions for Cloud Computing with Condor

Draft Manuscript

7 August 2009

Douglas Thain and Christopher Moretti

Department of Computer Science and Engineering

384 Fitzpatrick Hall

University of Notre Dame

Notre Dame, IN, 46556

dthain@nd.edu

cmoretti@nd.edu

to appear in:

Syed Ahson and Mohammad Ilyas, editors,

Cloud Computing and Software Services, CRC Press / Taylor and Francis Books, 2009.

2

1.1 Introduction

A cloud computer provides a simple interface that allows end users to allocate large amounts of

computing power and storage space at the touch of a button. However, many potential users of

cloud computers have needs much more complex than simply theability to allocate resources. In

scientific domains, it is easy to find examples of workloads that consist of hundreds or thousands

of interacting processes. A user that wishes to run such a workload on a cloud computer faces

the daunting task of deciding how many resources to allocate, where to dispatch each process,

when and where to move data, and how to deal with the inevitable failures. For this reason, many

users with large workloads are reluctant to move away from the predicable environment of a single

workstation or multicore server.

Abstractions are an effective way of harnessing large cloudcomputers while insulating the user

from technical complexities. Anabstraction is a structure that allows one to specify a workload

in a way that is natural to the end user. It is then up to the system to determine how best to realize

the workload given the available resources. This also allows the user to move a workload from one

machine to another without rewriting it from scratch. The concept of abstraction is fundamental

to computer science, and examples can be found in other software systems such as compilers,

databases, and filesystems.

Map-Reduce[9] is a well known abstraction for cloud computing. The Map-Reduce abstrac-

tion allows the user to specify two functions that transformand summarize data, respectively. If

the desired computation can be expressed in this form, then the computation can be scaled up to

thousands of nodes. The Map-Reduce abstraction is well suited for analyzing and summarizing

large amounts of data, and has a number of implementations ofwhich the open sourceHadoop [6]

is the most widely deployed.

But are there other useful abstractions? In our work with several scientific application commu-

nities at the University of Notre Dame, we have encountered anumber of large workloads that are

regularly structured, but do not fit the Map-Reduce paradigm. In each case, we found workloads

that were easy to write on the chalkboard, possible to run on one machine, but very challenging to

scale up to hundreds or thousands of nodes. In each case, our research group worked to design an

1.2. CONDOR AS A CLOUD COMPUTER 3

abstraction that could represent a large class of applications, and was able to execute reliably on a

cloud computer.

In this chapter, we will describe the following set of abstractions, in roughly increasing order

of complexity:

• Map - Applies a single program to a large set of data.

• All-Pairs - Computes a Cartesian product on two large sets of data.

• Sparse-Pairs- Computes a function on selected pairs of two large sets of data.

• Wavefront - Carries out a large dynamic programming problem.

• Directed Graph - Runs a large graph of processes with multiple dependencies.

We have implemented these abstractions on the Condor distributed processing system. We will

begin with a short overview of Condor as a cloud computer, andthen explain each abstraction

in turn. For each, we will present a formal model, describe how the abstraction is implemented,

and give an example of a community that has used the abstraction to scale up an application to

hundreds of CPUs. We conclude the chapter by discussing the relative power of each abstraction.

1.2 Condor as a Cloud Computer

Our foundation for this work is theCondor distributed processing system. Condor was first created

in 1987 at the University of Wisconsin, and has remained in continuous development and deploy-

ment ever since [15, 27]. At the time of writing, it was deployed at several thousand institutions

around the world, managing several hundreds thousand CPU cores [25, 5]. At a typical university,

the Condor software is deployed to all available machines, including desktop workstations, class-

room machines, and server clusters, all of which are typically idle 90% of the day. Users queue

jobs to run in the system, and Condor matches the jobs to run onmachines that would otherwise

go unused.

4

 0

 100

 200

 300

 400

 500

 600

02
July

09
July

16
July

23
July

30
July

N
um

be
r

of
 C

P
U

s

Total Condor Owner

Figure 1.1: Time Variations in a Condor Pool

A large Condor pool can be considered acloud computer. Like other cloud computing systems,

users request service from Condor, but don’t care (and cannot control) exactly which resources are

used to service that request. A job submitted to Condor couldrun on a desktop machine down the

hall, or in a machine room at another institution. However, Condor is unlike other cloud computing

systems in that it employspreemption [22]. A job running on a machine may be preempted if the

machine’s owner returns to type on the keyboard or otherwiseuses the CPU.

Figure 1.1 shows the natural variations found in our campus Condor pool over the course of

July 2009. The dark “Owner” curve shows the number of CPUs currently in use by their owners,

who are either typing at the keyboard or making extensive useof the CPU. The lighter “Condor”

curve shows the number of CPUs currently harnessed by Condor. The lightest “Total” curve shows

the total number of CPUs in the pool, which varies between 500and 600. As can be seen, all of

these values fluctuate considerably as machines are poweredon and off, used during the work day,

and harvested for batch workloads.

Condor has been widely used to run large numbers of long-running computations, typically

scientific simulations. However, it is not as well suited forlarge numbers of tasks that are short

running, data intensive, or both. Even in an unloaded system, it takes about thirty seconds from the

time a job is submitted until it actually begins running on a machine. This is because Condor must

mediate the needs of many different stakeholders, including the machine owner, the job owner, and

1.2. CONDOR AS A CLOUD COMPUTER 5

W

W

W

All−Pairs

Master Master

Wavefront

W W

W W

Campus Condor Cloud

Figure 1.2: Multiple Abstractions Sharing a Condor Pool

the pool manager. (Other cloud computing systems have similar latencies for resource allocation.)

Because Condor is careful to clean up thoroughly after a job completes, there is no easy way to

maintain state on a machine across multiple jobs.

To compensate for these properties, we have built an intermediate layer of software calledWork

Queuethat provides fast execution and data persistence on top of Condor. Work Queue consists of

two pieces: aMaster and aWorker . A Worker is a simple process that is submitted to the Condor

pool like an ordinary batch job. Once running, it makes a network connection back to a Master

process. The Master can send files to the worker, execute programs, and retrieve outputs.

In this way, the Master can start a new program in milliseconds rather than thirty seconds.

Further, it can take advantage of a semi-persistent filesystem: if two consecutive tasks require the

same input data, it only needs to be sent to the Worker once. Ofcourse, if Condor decides to evict

the Worker process, it will kill any running processes and delete the local storage. The Master is

able to detect these evictions, and re-assign tasks to otherWorkers as needed.

Figure 1.2 shows how all of these pieces fit together. The end user is not exposed to any

details of the cloud. Instead, he or she runs a command such asAll-Pairs or Wavefront

corresponding to the desired abstraction. The abstractionexamines the workload, decides how

many Workers it can use, and submits them as jobs to Condor. Condor decides what resources to

6

Start workers on machines that are available.

Condor

Master

Queue tasks that are ready to run.

Abstraction
S

ub
m

it
w

or
ke

rs
 a

s
C

on
do

r
jo

bs
.

Submits entire workload for execution.

End User

Workers

Dispatch tasks and data to available workers.

Figure 1.3: A Layered System for Cloud Computing

allocate to each user, and each abstraction schedules taskson whatever Workers become available.

The result is a layered system, where each component has a distinct responsibility, as shown in

Figure 1.3.

1.3 The Map Abstraction

We will begin by describing the simplest abstraction – Map – and then work our way up to more

complex abstractions. For each, we will give a formal definition, describe an example, and then

explain a significant result achieved using the abstraction.

Map(data D[i], function F (data x))

returns array R such thatR[i] = F (D[i])

Map applies a functionF to all elements of a datasetD, yielding a result dataset R. Of course,

Map and similar operations have been available in functional programming languages such as

LISP [24] for many years, and has long been recognized as a suitable primitive for parallel pro-

gramming [7, 13]. Map is a natural starting point for exploring parallelism.

In practice, our users invoke a standalone program calledMap that accepts two arguments: the

1.3. THE MAP ABSTRACTION 7

F FF

R[0] R[1] R[2]

D[0] D[2]D[1] . . .

R[n]. . .

D[n]

F F F FF

. . .

. . .

Figure 1.4: The Map Abstraction Applied to Biometrics

function is the name of a conventional program that transforms one file, and the array is a file

listing the names of files to be mapped. In contrast to Map-Reduce [9], which interfaces with C++,

and Hadoop [6], which interfaces with Java, Map and the rest of our abstractions use ordinary

executable programs as “functions”. This allows end users to use whatever language they are most

comfortable with, and often are able to plug in existing tools without recoding.

Figure 1.4 shows an application of Map used extensively in biometrics. A common task is to

convert a large set of iris images of about 300 KB each into iris codes of about 20 KB each. (Aniris

codeis a compressed binary representation of an iris actually used for archival and comparison [8].)

A program namedConvertIrisToCode can carry out one conversion in about 19s.

To execute this workload, the user runs:

Map IrisListing ConvertIrisToCode

Logically, this means to runConvertIrisToCode once for each entry inIrisListing:

ConvertIrisToCode iris001.jpg iris001.code

ConvertIrisToCode iris005.jpg iris005.code

ConvertIrisToCode iris008.jpg iris008.code

...

Although one could accomplish a Map by simply submitting batch jobs, our implementation

of the abstractions solves a number of technical challengesthat would otherwise make using the

8

system very challenging. It caches the executable and otherrequired libraries on the execution

nodes, detects failed or evicted Workers, detects compatibility failures with various machines,

aborts straggling Workers, preferentially assigns tasks to faster nodes, and deals with network

outages and other failures. In this way, the user can focus ontheir desired work instead of the

details of distributed computing.

A typical example of an unoptimized production run of Map on our cloud converted 58,639 iris

images to codes in 2.4 hours, using anywhere between 100 and 400 Workers at any given time. The

same workload would have taken 309 hours on a single CPU, for an effective speedup of 125X.

By making use of the Map abstraction on the cloud, the end usercan accomplish in a few hours

what previously took over a week.

1.4 The All-Pairs Abstraction

Building on the idea of applying a function to a one-dimensional array of single inputs, we move

on to All-Pairs, an abstraction in which each function call is applied onto a pair of inputs.

All-Pairs(data A, data B, function F (data x, data y))

returns matrix R such thatR[i, j] = F (A[i], B[j])

The All-Pairs abstraction applies a functionF to each pair of elements in datasetsA andB,

yielding a result matrixR, where each cell is the result of comparing two items. A common variant

of All-Pairs is to letA = B, in which case it is often only necessary to compute half of the result

matrix. Previous researchers have studied All-Pairs theoretically [28] and on small clusters [4].

Our contribution is to scale the problem up to hundreds of nodes in the cloud [16].

As with the previous abstraction, the user provides a “function” in the form of a program that

compares two input files. The data setsA andB are text files listing the remaining files to be

compared. For small problems, the result matrix is emitted as a plain text file; for large problems,

it is stored as a distributed data structure.

All-Pairs problems occur in several fields, such as biometrics, bioinformatics, and data mining.

1.4. THE ALL-PAIRS ABSTRACTION 9

3.6 Billion

Iris Comparisons

.02 seconds per pair

F

A[0]

A[1]

A[2]

A[3]

B[0] B[1] B[2] B[3]

Figure 1.5: The All-Pairs Abstraction Applied to Biometrics

We will focus on biometrics here. A common problem in the fieldis evaluation of new algorithms

developed to improve the state of the art in personal identification. One way to do this is to

assemble a large corpus of images and compare all of them to each other using the new algorithm.

Results obtained with different algorithms on the same set of images are directly comparable for

overall effectiveness.

Figure 1.5 continues with the application from the previousexample. Using Map, the user has

already reduced 58,639 iris images into an equal number of compact iris codes. He has written

a programCalculateIrisSimilarity which computes the masked Hamming distance be-

tween two iris codes. The program can complete approximately 50 such comparisons per second.

An All-Pairs comparison of those images against each other would consist of 3.4 billion function

executions, 795 days of of serial computation, and 6.8 TB of aggregate input requirements.

Such a workload is impractical to complete serially, so scaling up to the cloud is required. To

invoke the All-Pairs abstraction, the user specifies the input sets and the comparison function:

AllPairs SetA SetB CalculateIrisSimilarity

The abstraction handles all of the computation and data management. Using a model that takes

into account function computation time and data element sizes it calculates how many resources

should be used for the workload and how much work they should be given at a time to balance

queuing overhead and job runtime. It then distributes data to chosen resources and assigns compu-

tation to those resources. If the node has multiple cores, the access pattern is carefully chosen to

10

maximize the cache hit rate. The final results are stored in a large distributed array, which may be

accessed directly, or downloaded to a local file.

Developing a model for the All-Pairs problem is a critical component for several reasons. First,

it relieves the user of the responsibility of determining the number of resources. As problems scale

up in size, the number of resources required to not necessarily scale up in kind, and thus users may

make poor decisions – underprovisioning the system hurtingperformance, or overprovisioning

the system increasing overhead and wasting resources. Second, the ability to predict very gen-

eral approximate runtimes based on simple diagnostic benchmarks for work allows the system to

manage running processes and detect jobs that are not makingprogress within a reasonable time

(whether due to bugs, hardware misconfigurations, etc.) automatically instead of requiring a user

to aggressively monitor his job.

Our largest production run of All-Pairs compared 58,639 iris codes generated from the Iris

Challenge Evaluation 2006 [2] dataset all to each other. To our knowledge, this is the largest such

result ever computed on a publicly available dataset. The abstraction ran in 10 days on a varying

set of 100-200 nodes in the cloud, for an effective speedup ofabout 80X [16].

1.5 The Sparse-Pairs Abstraction

There are many workloads that involve the comparison of large sets of objects, but do not require

all possiblecomparisons. These workloads require the Sparse-Pairs abstraction.

Sparse-Pairs(data A, data B, function F (data x, data y), pairs P)

returns array R such thatF (A[P [i].x], B[P [i].y])

TheSparse-Pairsabstraction applies a functionF to pairs of elements in setsA andB given

by the setP , yielding a result setR. Sparse-Pairs fits between the one-dimensional array abstrac-

tion of Map, and the two-dimensional array abstraction of All-Pairs. In this way it is a bit like

superimposing Bag-of-Tasks [3, 23] on top of the one-dimensional structure of Map.

Sparse-Pairs problems occur frequently in the field of bioinformatics, particularly in the prob-

1.5. THE SPARSE-PAIRS ABSTRACTION 11

8 Million

50−500 Base Sequences

.03 seconds per pair

F

84 Million Pairs

F

A[0]

P[1]:
A[2]−B[3]

P[0]:
A[1]−B[1]

B[1] B[2] B[3]

A[1]

A[2]

A[3]

ATCGB[0] CGTA ATGCCCAG

ATCG

CGTA

CCAG

ATGC

Figure 1.6: The Sparse-Pairs Abstraction Applied to Bioinformatics

lem ofgenome assembly. Very briefly, genome assembly is the problem of assembling many small

fragments of DNA (hundreds of bytes each) into one long string (billions of bytes) that represents

the entire genomic code of an organism. This is much like putting together a jigsaw puzzle: one

must compare many pieces to each other in order to determine which should be adjacent.

In principle, one could run an All-Pairs abstraction to compare all fragments to each other, and

then match up the pieces with the best scores. However, for a sufficiently large problem, this is

computationally infeasible. Fortunately, there exist various heuristics that can be used to filter

out the vast majority of these comparisons [19], leaving only a list of “candidate” sequences to

compare. This candidate list becomes theP set for a Sparse-Pairs workload, as shown in Figure 1.6

The principal complication for Sparse-Pairs is that it is not generally feasible to optimize a

bulk transfer of data files to many nodes because while each data item is used multiple times, the

number of repetitive uses may be far less than the number of nodes. Thus, the Master must be

active in transferring data, which potentially creates a single bottleneck at the Master’s outgoing

network link. Additionally, for fast-finishing functions,even if the Master has sufficient bandwidth

the network latency may be too great to keep a sufficient number of Workers satiated.

The first issue can be alleviated with compressed data – in bioinformatics, the language{ACGT}

can easily be compressed to two bits per basepair – or multiple Masters. The second can be im-

12

proved by grouping together many functions into a single “task” sent to the Worker in order to

prevent numerous high-latency round-trips in sending datafor potentially thousands of functions.

Two data-related factors differentiate Sparse-Pairs fromboth Map and All-Pairs. First, although

the pairs are sparse, each sequence is still used many times throughout the workload. Thus, while

the pairs to be computed could be written in full to files in which every pair was a single element,

and Map could then be run using that input, this is inefficient. Instead, if the set of sequences is not

too large for main memory, the sequences can be stored only once in their datafile and are read into

the Master’s memory to construct the tasks for the Workers onthe fly as the workload advances.

A Sparse-Pairs result is a subset of a corresponding All-Pairs result. All-Pairs can be optimized

to take advantage (via data transfer and assignment of computation to resources) of the fact that

every single computation pair will be completed. However, it is unnecessary to complete an entire

All-Pairs problem for every case of Sparse-Pairs, and for particularly sparse sets of pairs, it may be

very inefficient to do so even if the All-Pairs abstraction ishighly optimized. The regular structure

of All-Pairs also allows the interface to the abstraction torequire only the function and the names

of the full sets. For Sparse-Pairs the usage is less uniform even for the same input set size, thus

the design in which each pair should be transfered to the hoston which its computation will be

completed, rather than allowing computation to be arbitrarily assigned to pre-staged identical hosts.

Our Sparse-Pairs implementation is in regular use with a bioinformatics research group at Notre

Dame. Our largest assembly so far used 8 million sequences extracted from a completedSorghum

bicolor genome and completed alignments for 84 million candidate pairs. (The equivalent All-

Pairs would have required 64trillion comparisons.) Using 512 CPUs, the assembly completed in

just under two hours, with an effective speedup of 425X [17].

1.6 The Wavefront Abstraction

So far, each of the abstractions discussed has allowed computation to be completed in an arbitrary

order. However, more complex abstractions such as Wavefront have dependencies, requiring one

stage of the computation to complete before another can proceed.

1.6. THE WAVEFRONT ABSTRACTION 13

F

F

A[0]
5.3M−Base Sequences

split into
100 x 100
Wavefront
Problem

GACA AGTC ACGCCCAG

ATCG

CGTA

CCAG

ATGC

A[1]

A[2]

A[3]

B[0] B[1] B[2] B[3]

Figure 1.7: The Wavefront Problem Applied to Bioinformatics

Wavefront(data X, data Y, function F (data x, data y, data d))

returns matrix R[i, j] =























X[i] if j = 0

Y [j] if i = 0

F (R[i − 1, j], R[i, j − 1], R[i − 1, j − 1]) otherwise

Figure 1.7 shows theWavefront abstraction, which is a recurrence relation in two dimensions.

Given two data sets as original input, and a function that takes three inputs and returns a single

output, calculate the function at each ofn2 possible states of the system, where each state is de-

fined by the results of its predecessor states. A state’s predecessors are its neighbors in a matrix,

whose values have been computed by previous function executions. The problem can be gener-

alized to multiple dimensions. Wavefront has previously been studied in the context of multicore

processors [1], which our work has extended to clusters and clouds of multicore machines [29].

In practice, the user invokes Wavefront by specifying the input data sets and the recurrence

function. As before, the “function” is an arbitrary programthat accepts files on the command line:

Wavefront XData YData RecurrenceFunction

Examples of Wavefront problems occur in game theory, economics, bioinformatics, and any

problem that involves dynamic programming. In game theory,a recurrence table can be con-

structed to enumerate all possible states of a simulation with given inputs. Each cell in the table

is dependent on its previous neighbor states. With a completed table, economists can see the start

14

states, all possible final states, and all possible paths within the simulated context.

A common use of Wavefront in bioinformatics is the alignmentof two very large DNA strings.

This is done by constructing a dynamic programming table, where each cell gives the “score”

of the alignment with each string offset by the coordinates of that cell. The alignment of two

complete genomes (billions of bytes) is intractable serially. However, the entire problem can be

broken up into a number of smaller sub-alignment problems. Each sub-problem computes the

dynamic programming table for a fragment of the genome, and then passes the boundary value to

its neighbor.

In previous abstractions, the ability to predict runtimes of work units was used primarily to

provision resources. Determining which processes have runtoo long is useful for detecting mis-

configured nodes, but a slow node at the beginning or middle ofthe workload does relatively little

damage to overall performance because there is still a high degree of concurrency. In Wavefront,

however, predicting runtimes takes on extra importance. A slow-finishing work unit in Wavefront

propagates its delay through to all of its dependents. This is especially harmful early in a work-

load, when most or all of the remaining computations are dependents, and there is already limited

concurrency available in the problem. To combat this, Wavefront makes use of the Work Queue’s

ability to remove, reschedule, and restart tasks that have run significantly beyond their predicted

completion time.

Using the Wavefront abstraction, we were able to complete the alignment of two variants of the

Anthrax genome measuring 5.4 million bytes. Each genome wassplit into 100 fragments of about

54,000 bytes, yielding a 100x100 Wavefront problem. Using the cloud, the problem completed in

8.3 hours instead of 13 days, achieving an effective speedupof 38X.

1.7 The Directed Graph Abstraction

The abstractions that we have presented so far have a highly regular structure. However, many

users have applications that can only be described as adirected graph of programs. There exist

a number ofworkflow languagesthat are capable of expressing arbitrary graphs of tasks, such as

1.7. THE DIRECTED GRAPH ABSTRACTION 15

a.dat b.dat: all.dat
split all.dat

a.out: a.dat
process a.dat

b.out: b.dat
process b.dat

process

b.out

process

a.out

split

b.dat a.dat

all.dat

Figure 1.8: Small Example of the Makeflow Language

Dagman [26], Pegasus [10], Taverna [18], Swift [30], BPEL [14], and Dryad [12], to name a few.

Each of these languages has its own syntax, and is capable of connecting to a number of remote

systems.

However, we often find that end users are reluctant to learn anentirely new language simply

to run some programs in a particular distributed system. Fortunately, many are already using a

coordination language that easily expresses parallelism.The traditionalMake [11] tool is typically

used to drive the compilation and linking of complex programs, but it can be used to drive any

arrangement of programs and files.

To this end, we designed a tool calledMakeflow that implements the Directed Graph abstraction

using the same basic language as Make. In many cases, users can take their existing Makefiles and

use them unmodified with Makeflow. The Makeflow program reads in a directed graph, and then

submits jobs individually to be executed. By changing command-line options, the same directed

graph can be run on a single multicore computer, on a Condor pool, or on the Work Queue system.

Makeflow keeps a transaction log, so that in the event of failure, the entire workload can be picked

up where it left off without losing or duplicating jobs.

Figure 1.8 shows a very small example of a Makeflow. The user gives a set of rules, each

one stating a program to run, along with the files that it requires and the files that it uses. In the

example, the programsplit accepts the fileall.dat as input, and produces the filesa.dat

16

finalize

complete

collect

total

collect

error

collect

output

blast

total.5error.5output.5

blast

total.4error.4output.4

blast

total.3error.3output.3

blast

total.2error.2output.2

blast

total.1error.1output.1

blast

total.0error.0output.0

split

input.5input.4 input.3input.2input.1 input.0 job.params

input

Figure 1.9: An Example Makeflow Used in Bioinformatics

andb.dat as output. Each of those is then consumed by theprocess program.

Figure 1.9 shows a larger example of a real Makeflow written tosupport a bioinformatics ap-

plication. In the figure, circles represent programs, and squares represent the files that they read

and write. In this particular example, the topmost program reads a large input file and splits it into

many pieces. Each piece is then processed by a genomic searchtool, which creates three different

outputs per piece. The results must be joined together and analyzed in order to produce a final

result. The system is capable of running workloads consisting of hundreds of thousands of nodes.

Makeflow is currently used as the primary execution engine for a bioinformatics research portal

at the University of Notre Dame. A typical Makeflow job executed via the portal consisted of 704

tasks dispatched to the Condor pool and ran on between 25-56 cores on a designated cluster. The

overall workflow consumed 686 CPU-hours in 17 hours of wall clock time, reducing the runtime

from nearly a month down to less than a day.

1.8 Choosing the Right Abstraction

As we have mentioned above, some abstractions can be interchanged with each other, with some

loss of efficiency. The formal relationship between different abstractions, and how to choose

amongst them, remains an open problem in our field. How, then,can a user choose which one

1.8. CHOOSING THE RIGHT ABSTRACTION 17

to use for a given problem? So far, we have worked closely withour potential users to choose

the appropriate abstraction for their needs. With the growing suite of abstractions, though, it is

becoming important that users in various fields can select the right abstraction from the suite based

on their knowledge of their own problem.

The intent of providing abstractions is for the user to definea large workload in a simple manner.

The user should be able to use codes that are very similar or identical to their serial implementa-

tions. The user should be able to garner good performance without having to separately implement

complicated resource management, data management, and fault tolerance mechanisms into each

application.

Abstractions on the whole shield the user from difficult details about executing a workload in a

distributed environment. However, it is often the case thatthe abstraction that fits the problem best

– either due to the design of the abstraction or the way a user has defined the problem – will be

more efficient due to less transformation required to scale up to the cloud and because of greater

possibilities for problem-specific solution optimizations.

It is our general suggestion that a user should choose the abstraction that fits the way he already

thinks about his problem. This most easily fulfills the intent of running a workload as-is, and

simply scaling up to a cloud while abstracting away the messier details of the larger scale. This

also usually requires the least amount of user overhead to handle the details of transforming his

serial application into an entirely different problem before scaling it up.

An example of additional work required to transform the problem is seen when comparing

Wavefront to a general DAG. A particular piece of a Wavefrontcomputation can be referenced

simply by coordinates in the results table. That ordered pair, when combined with the problem

definition, is sufficient to enumerate all incoming and outgoing edges in the DAG. The more gen-

eral DAG abstraction would need to define the problem in a lessefficient manner, costing execution

time to complete the transcription into the more general definition and also the disk/memory re-

sources to store it. Even then, when executing, a general DAGabstraction would still not have

the advantages of automatically being able to optimize diskand memory management to the rigid

patterns of a Wavefront problem. Thus, it only makes sense for a user who is already looking at

his workload as a Wavefront problem to use the abstraction that is most specific for that problem –

18

Runtime Runtime
Application Problem Size on One CPU in Cloud

Map Transform to Iris Code 58,639 irises 12.8 days 2.4 hours
All-Pairs Compare Iris Codes 58,639 irises 2 years 10 days

Sparse-Pairs Sequence Overlapping 84 million pairs 35 days 2 hours
Wavefront Long Sequence Alignment 5.3 million bytes 13 days 8 hours

Directed Graph Parallel Genome Search 704 nodes 686 hours 17 hours

Table 1.1: Summary of Typical Workloads

because it fits with how he has already designed his approach.

This is, however, only a general suggestion, and must be reevaluated even when scaling up the

same workload. An example of a case in which this is importantwas shown above when discussing

the Sparse-Pairs problem. A scientist may start with a fairly dense set of pairs to compute between

two sets, and decide to use the All-Pairs problem. However, as the problem is scaled up and

the set of pairs becomes sparser, even though the All-Pairs abstraction is still available and will

still solve the problem, it no longer is the appropriate choice. Generalizing an arbitrary set of

computation pairs into the superset of computation pairs will increase the amount of work he

requires significantly. Not only will it require much more time to compute all the extraneous pairs

that he isn’t interested in, but the abstraction solving that problem will provision more remote

resources (data and worker nodes, for instance) to solve thelarger version.

1.9 Conclusion

In this chapter, we have demonstrated several abstractionsfor cloud computing. An abstraction

allows an end user to express a very large workload in a compact form, allowing the underly-

ing system to handle the complexity of allocating resources, dispatching tasks, managing data,

and dealing with failures. For each abstraction, we have shown a scientific application that gains

significant benefit from the cloud.

Our suite of abstractions is not necessarily complete. Our experience so far suggests that a

given community of researchers is likely to engage in the same kinds of computations, albeit

with different underlying functions and different scales of data. This is only natural, because

both collaborating and competing researchers may use the same underlying techniques and must

1.9. CONCLUSION 19

compare their work to one another. For this reason, one or twoabstractions may be sufficient to

serve a very large community of people in a given field of study. At our institution, Map and All-

Pairs are common tasks in biometrics research, while Sparse-Pairs and Wavefront are useful for

bioinformatics. We have found that Makeflow has broad application.

We have implemented these abstractions in the Condor distributed system because it is widely

used to share computing power in academic settings. However, the same concepts can be applied

to to other systems. For example, the Work Queue system can bedeployed on any kind of cloud

computer in order to run the same set of abstractions. Further, abstractions need not be imple-

mented with plain programs and files as we have done, but couldalso be implemented in dynamic

languages such as Java or C♯. using formal functions and datatypes. Such implementations would

be more strongly typed and have less invocation overhead, but would of course be restricted to the

given language.

For more information about these abstractions, the reader may consult our research publica-

tions [21, 16, 17, 29]. Code implementing these abstractions can be downloaded from the Coop-

erative Computing Lab at the University of Notre Dame athttp://ccl.cse.nd.edu. The

Condor distributed computing software is available from the University of Wisconsin at

http://www.cs.wisc.edu/condor.

Acknowledgments

This work was supported in part by National Science Foundation grants CCF-0621434 and CNS-

0643229. We thank Prof. Patrick Flynn, Karen Hollingsworth, Robert Mckeon, and Tanya Peters

for their collaboration on biometrics applications. We thank Prof. Scott Emrich, Michael Olson,

Ben Drda, and Rory Carmichael for their collaboration on bioinformatics applications. We thank

Ryan Jansen, Joey Rich, Kameron Srimoungchanh, and Rachel Witty for testing early versions of

our software.

20

References

[1] J. Anvik, S. MacDonald, D. Szafron, J. Schaeffer, S. Bromling, and K. Tan. Generating

Parallel Programs from the Wavefront Design Pattern. InIEEE International Parallel and

Distributed Processing Symposium (IPDPS), page 165, 2002.

[2] Iris Challenge Evaluation 2006, National Institute of Standards and Technology

http://iris.nist.gov/ice/ice2006.htm, July 2009.

[3] D. Bakken and R. Schlichting. Tolerating Failures in theBag-of-Tasks Programming

Paradigm. InIEEE International Symposium on Fault Tolerant Computing, 1991.

[4] W. Chen, A. Radenski, and B. Norris. A Generic All-Pairs Cluster-Computing Pipeline and

its Applications. InParallel Computing: Fundamentals & Applications, 366–374, 2000.

[5] Condor World Map. http://www.cs.wisc.edu/condor/map, July 2009.

[6] The Hadoop Project. http://hadoop.apache.org, July 2009.

[7] G. E. Blelloch. Scans as primitive parallel operations.IEEE Transactions on Computers,

C-38(11), November 1989.

[8] J. Daugman. How iris recognition works.IEEE Transactions on Circuits and Systems for

Video Technology, 14(1):21–30, 2004.

[9] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large cluster. In

Operating Systems Design and Implementation (OSDI), 2004.

[10] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, B. Ber-

riman, J. Good, A. Laity, J. Jacob, and D. Katz. Pegasus: A framework for mapping complex

scientific workflows onto distributed systems.Scientific Programming Journal, 13(3), 2005.

[11] S. Feldman. Make – A Program for Maintaining Computer Programs. Software: Practice

and Experience, 9:255–265, November 1978.

[12] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed data parallel

programs from sequential building blocks. InProceedings of EuroSys, March 2007.

[13] S. L. P. Jones. Parallel implementations of functionalprogramming languages.The Computer

Journal, 32:175–186, April 1989.

[14] D. Jordan and J. Evdemon. Web services business processexecution language version 2.0.

OASIS Standard, April 2007.

[15] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of idle workstations. InInternational

Conference on Distributed Computing Systems (ICDCS), June 1988.

1.9. CONCLUSION 21

[16] C. Moretti, H. Bui, K. Hollingsworth, B. Rich, P. Flynn,D. Thain, All-Pairs: An Abstrac-

tion for Data Intensive Computing on Campus Grids.IEEE Transactions on Parallel and

Distributed Systems, accepted for publication in 2009.

[17] C. Moretti, M. Olson, S. Emrich, and D. Thain. Scalable Module Genome Assembly on

Campus Grids. Technical Report 2009-04, University of Notre Dame, Computer Science and

Engineering Department, 2009.

[18] T. Oinn and et al. Taverna: A tool for the composition andenactment of bioinformatics

workflows. Bioinformatics, 20(17):3045–3054, 2004.

[19] M. Pop, S. L. Salzberg, and M. Shumway. Genome sequence assembly:algorithms and issues.

Computer, 35(7):47–54, 2002.

[20] J. Reinganum Dynamic Games of Innovation. InJournal of Economic Theory, 25:21–41,

1981.

[21] B. Rich and D. Thain. DataLab: Transactional Data Parallel Computing on an Active Storage

Cloud. InIEEE/ACM High Performance Distributed Computing, pages 233–234, 2008.

[22] A. Roy and M. Livny. Condor and preemptive resume scheduling. Kluwer Academic Pub-

lishers, 2004.

[23] D. da Silva, W. Cirne, and F. Brasilero. Trading Cycles for Information: Using Replication

to Schedule Bag-of-Tasks Applications on Computational Grids. InEuro-Par, 2003.

[24] G. Steele.Common LISP: The Language. Digital Press, Woburn, MA, 1990.

[25] D. Thain and M. Livny. How to Measure a Large Open Source Distributed System.Concur-

rency and Computation: Practice and Experience, 18(15):1989–2019, 2006.

[26] D. Thain, T. Tannenbaum, and M. Livny. Condor and the Grid. In F. Berman, A. Hey, and

G. Fox, editors,Grid Computing: Making the Global Infrastructure a Reality. John Wiley,

2003.

[27] D. Thain, T. Tannenbaum, and M. Livny. Distributed Computing in Practice: The Condor

Experience. Concurrency and Computation: Practice and Experience, 17(2-4):323–356,

2005.

[28] K. Theobald, and G. Gao. An Efficient Parallel Algorithmfor All Pairs Examination.

ACM/IEEE conference on Supercomputing, 742–753, 1991.

[29] L. Yu, C. Moretti, S. Emrich, K. Judd, and D. Thain. Harnessing Parallelism in Multicore

Clusters with the All-Pairs and Wavefront Abstractions. InIEEE High Performance Dis-

22

tributed Computing, pages 1–10, 2009.

[30] Y. Zhao, J. Dobson, L. Moreau, I. Foster, and M. Wilde. A notation and system for expressing

and executing cleanly typed workflows on messy scientific data. InSIGMOD, 2005.

	Introduction
	Condor as a Cloud Computer
	The Map Abstraction
	The All-Pairs Abstraction
	The Sparse-Pairs Abstraction
	The Wavefront Abstraction
	The Directed Graph Abstraction
	Choosing the Right Abstraction
	Conclusion

