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1.1 Introduction

A cloud computer provides a simple interface that allows end users to aéolzage amounts of
computing power and storage space at the touch of a buttomevts, many potential users of
cloud computers have needs much more complex than simpBbtitiey to allocate resources. In
scientific domains, it is easy to find examples of workloa@d tonsist of hundreds or thousands
of interacting processes. A user that wishes to run such &laamt on a cloud computer faces
the daunting task of deciding how many resources to allpaabere to dispatch each process,
when and where to move data, and how to deal with the ine@taliiures. For this reason, many
users with large workloads are reluctant to move away froemptiedicable environment of a single
workstation or multicore server.

Abstractions are an effective way of harnessing large ctmmdputers while insulating the user
from technical complexities. Aabstraction is a structure that allows one to specify a workload
in a way that is natural to the end user. It is then up to theesysd determine how best to realize
the workload given the available resources. This also alitwe user to move a workload from one
machine to another without rewriting it from scratch. Thecept of abstraction is fundamental
to computer science, and examples can be found in other a@ftaystems such as compilers,
databases, and filesystems.

Map-Reduce[9] is a well known abstraction for cloud computing. The MRapduce abstrac-
tion allows the user to specify two functions that transf@nd summarize data, respectively. If
the desired computation can be expressed in this form, theesamputation can be scaled up to
thousands of nodes. The Map-Reduce abstraction is wedidstor analyzing and summarizing
large amounts of data, and has a number of implementatiomkioh the open sourddadoop[6]
is the most widely deployed.

But are there other useful abstractions? In our work witressg\scientific application commu-
nities at the University of Notre Dame, we have encountenedraber of large workloads that are
regularly structured, but do not fit the Map-Reduce paradigmeach case, we found workloads
that were easy to write on the chalkboard, possible to runnenmachine, but very challenging to
scale up to hundreds or thousands of nodes. In each casesearch group worked to design an
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abstraction that could represent a large class of appicstiand was able to execute reliably on a

cloud computer.

In this chapter, we will describe the following set of abstians, in roughly increasing order

of complexity:

e Map - Applies a single program to a large set of data.

e All-Pairs - Computes a Cartesian product on two large sets of data.

e Sparse-Pairs- Computes a function on selected pairs of two large setstaf da
e Wavefront - Carries out a large dynamic programming problem.

e Directed Graph - Runs a large graph of processes with multiple dependencies

We have implemented these abstractions on the Condonuittd processing system. We will
begin with a short overview of Condor as a cloud computer, thieth explain each abstraction
in turn. For each, we will present a formal model, describe e abstraction is implemented,
and give an example of a community that has used the absimactiscale up an application to
hundreds of CPUs. We conclude the chapter by discussinglii@/e power of each abstraction.

1.2 Condor as a Cloud Computer

Our foundation for this work is th€ondor distributed processing system. Condor was first created
in 1987 at the University of Wisconsin, and has remained imticoous development and deploy-
ment ever since [1%, 27]. At the time of writing, it was depdyat several thousand institutions
around the world, managing several hundreds thousand CRig @5 5]. At a typical university,
the Condor software is deployed to all available machineduding desktop workstations, class-
room machines, and server clusters, all of which are tylyigdle 90% of the day. Users queue
jobs to run in the system, and Condor matches the jobs to runamhines that would otherwise

go unused.
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Figure 1.1: Time Variations in a Condor Pool

Alarge Condor pool can be considered@aud computer. Like other cloud computing systems,
users request service from Condor, but don't care (and d¢arumtrol) exactly which resources are
used to service that request. A job submitted to Condor cauldn a desktop machine down the
hall, or in a machine room at another institution. Howevem@or is unlike other cloud computing
systems in that it employwreemption [22]. A job running on a machine may be preempted if the

machine’s owner returns to type on the keyboard or otherusss the CPU.

Figure[I.1 shows the natural variations found in our campoisdor pool over the course of
July 2009. The dark “Owner” curve shows the number of CPUserily in use by their owners,
who are either typing at the keyboard or making extensiveafisee CPU. The lighter “Condor”
curve shows the number of CPUs currently harnessed by Comtlelightest “Total” curve shows
the total number of CPUs in the pool, which varies between&@@®600. As can be seen, all of
these values fluctuate considerably as machines are powe@ud off, used during the work day,

and harvested for batch workloads.

Condor has been widely used to run large numbers of longingncomputations, typically
scientific simulations. However, it is not as well suited famge numbers of tasks that are short
running, data intensive, or both. Even in an unloaded systeaakes about thirty seconds from the
time a job is submitted until it actually begins running on aamine. This is because Condor must
mediate the needs of many different stakeholders, inctutfia machine owner, the job owner, and
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Figure 1.2: Multiple Abstractions Sharing a Condor Pool

the pool manager. (Other cloud computing systems haveasihatiencies for resource allocation.)
Because Condor is careful to clean up thoroughly after a @hpietes, there is no easy way to
maintain state on a machine across multiple jobs.

To compensate for these properties, we have built an indiateslayer of software called/ork
Queuethat provides fast execution and data persistence on toprd@. Work Queue consists of
two pieces: aMaster and aWorker . A Worker is a simple process that is submitted to the Condor
pool like an ordinary batch job. Once running, it makes a ogkwonnection back to a Master
process. The Master can send files to the worker, executegmsg and retrieve outputs.

In this way, the Master can start a new program in millisesorather than thirty seconds.
Further, it can take advantage of a semi-persistent fileaysif two consecutive tasks require the
same input data, it only needs to be sent to the Worker onceo@se, if Condor decides to evict
the Worker process, it will kill any running processes antktiethe local storage. The Master is
able to detect these evictions, and re-assign tasks to \btbekers as needed.

Figure[I.2 shows how all of these pieces fit together. The el i$ not exposed to any
details of the cloud. Instead, he or she runs a command sughlasPai r s or Wavef r ont
corresponding to the desired abstraction. The abstraeti@mines the workload, decides how
many Workers it can use, and submits them as jobs to Condord&@alecides what resources to
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Figure 1.3: A Layered System for Cloud Computing

allocate to each user, and each abstraction schedulesotasksatever Workers become available.
The result is a layered system, where each component hasirectiresponsibility, as shown in
Figure[1.3B.

1.3 The Map Abstraction

We will begin by describing the simplest abstraction — Mamé then work our way up to more
complex abstractions. For each, we will give a formal debnit describe an example, and then
explain a significant result achieved using the abstraction

Map ( data D[i], function F'( data x))
returns array R such that R[i] = F(D]i])

Map applies a functiorf’ to all elements of a datasér, yielding a result dataset R. Of course,
Map and similar operations have been available in functipnegramming languages such as
LISP [24] for many years, and has long been recognized astabeiiprimitive for parallel pro-
gramming[7/1B3]. Map is a natural starting point for exphayiparallelism.

In practice, our users invoke a standalone program cMbgathat accepts two arguments: the
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Figure 1.4: The Map Abstraction Applied to Biometrics
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function is the name of a conventional program that tramsfoone file, and the array is a file
listing the names of files to be mapped. In contrast to MapdRe®], which interfaces with C++,
and Hadoopl[]6], which interfaces with Java, Map and the réstuo abstractions use ordinary
executable programs as “functions”. This allows end useusé whatever language they are most
comfortable with, and often are able to plug in existing soelthout recoding.

Figure[L# shows an application of Map used extensively amigtrics. A common task is to
convert a large set of iris images of about 300 KB each insccinides of about 20 KB each. (Ars
codeis a compressed binary representation of an iris actuadiyl & archival and comparisan [8].)
A program namedConvert | ri sToCode can carry out one conversion in about 19s.

To execute this workload, the user runs:

Map IrisListing ConvertlrisToCode

Logically, this means to ru@onvert | ri sToCode once for each entry ihri sLi sti ng:

ConvertlrisToCode iris001.jpg iris001. code
ConvertlrisToCode iris005.jpg iris005. code
ConvertlrisToCode iris008.jpg iris008.code

Although one could accomplish a Map by simply submittingchgbbs, our implementation
of the abstractions solves a number of technical challetiggsvould otherwise make using the
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system very challenging. It caches the executable and odlogiired libraries on the execution
nodes, detects failed or evicted Workers, detects comipgtifailures with various machines,
aborts straggling Workers, preferentially assigns taskfaster nodes, and deals with network
outages and other failures. In this way, the user can focuthein desired work instead of the
details of distributed computing.

A typical example of an unoptimized production run of Map am doud converted 58,639 iris
images to codes in 2.4 hours, using anywhere between 1000énd/drkers at any given time. The
same workload would have taken 309 hours on a single CPU nfeffactive speedup of 125X.
By making use of the Map abstraction on the cloud, the end esmeiaccomplish in a few hours
what previously took over a week.

1.4 The All-Pairs Abstraction

Building on the idea of applying a function to a one-dimensiaarray of single inputs, we move
on to All-Pairs, an abstraction in which each function calpplied onto a pair of inputs.

All-Pairs ( data A, data B, function F'( data z, datay))
returns matrix R such that R[i, j] = F'(A[i], Blj])

The All-Pairs abstraction applies a functiafi to each pair of elements in datasetsand B,
yielding a result matrix?, where each cell is the result of comparing two items. A comwariant
of All-Pairs is to letA = B, in which case it is often only necessary to compute half efrdsult
matrix. Previous researchers have studied All-Pairs #tezally [28] and on small clustersi[4].
Our contribution is to scale the problem up to hundreds ofrsdd the cloud16].

As with the previous abstraction, the user provides a “fiamétin the form of a program that
compares two input files. The data setsand B are text files listing the remaining files to be
compared. For small problems, the result matrix is emitted plain text file; for large problems,
it is stored as a distributed data structure.

All-Pairs problems occur in several fields, such as biorogtihioinformatics, and data mining.
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Figure 1.5: The All-Pairs Abstraction Applied to Biomesic

We will focus on biometrics here. A common problem in the fislévaluation of new algorithms
developed to improve the state of the art in personal ideatitin. One way to do this is to
assemble a large corpus of images and compare all of thenchootiaer using the new algorithm.
Results obtained with different algorithms on the same Behages are directly comparable for
overall effectiveness.

Figure[Lb continues with the application from the previexample. Using Map, the user has
already reduced 58,639 iris images into an equal number et iris codes. He has written
a programCal cul atel ri sSi m | ari ty which computes the masked Hamming distance be-
tween two iris codes. The program can complete approxim&t@ksuch comparisons per second.
An All-Pairs comparison of those images against each otloeidvconsist of 3.4 billion function
executions, 795 days of of serial computation, and 6.8 TRygf@gate input requirements.

Such a workload is impractical to complete serially, soisgalip to the cloud is required. To
invoke the All-Pairs abstraction, the user specifies thetigpts and the comparison function:

Al Pairs SetA SetB CalculatelrisSimlarity

The abstraction handles all of the computation and data geanant. Using a model that takes
into account function computation time and data elememssizcalculates how many resources
should be used for the workload and how much work they shoalditen at a time to balance
gueuing overhead and job runtime. It then distributes dathosen resources and assigns compu-

tation to those resources. If the node has multiple coresaticess pattern is carefully chosen to
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maximize the cache hit rate. The final results are stored amggeldistributed array, which may be

accessed directly, or downloaded to a local file.

Developing a model for the All-Pairs problem is a criticahgoonent for several reasons. First,
it relieves the user of the responsibility of determining ttumber of resources. As problems scale
up in size, the number of resources required to not necéssaale up in kind, and thus users may
make poor decisions — underprovisioning the system hugierformance, or overprovisioning
the system increasing overhead and wasting resources.n&eite ability to predict very gen-
eral approximate runtimes based on simple diagnostic beadts for work allows the system to
manage running processes and detect jobs that are not makigeess within a reasonable time
(whether due to bugs, hardware misconfigurations, etcQnaatically instead of requiring a user
to aggressively monitor his job.

Our largest production run of All-Pairs compared 58,638 oodes generated from the lIris
Challenge Evaluation 2005/[2] dataset all to each other.ufcknowledge, this is the largest such
result ever computed on a publicly available dataset. Tis¢rattion ran in 10 days on a varying
set of 100-200 nodes in the cloud, for an effective speedabobit 80X [16].

1.5 The Sparse-Pairs Abstraction

There are many workloads that involve the comparison oElaefs of objects, but do not require
all possiblecomparisons. These workloads require the Sparse-Pairsetisn.

Sparse-Pairg data A, data B, function F'( data x, datay), pairs P)
returns array R such that F'(A[P]i].x], B[P]i].y])

The Sparse-Pairsabstraction applies a functidfi to pairs of elements in set$ and B given
by the setP, yielding a result sek. Sparse-Pairs fits between the one-dimensional arrayaabstr
tion of Map, and the two-dimensional array abstraction diPdirs. In this way it is a bit like
superimposing Bag-of-Taskis [3,123] on top of the one-dirmarad structure of Map.

Sparse-Pairs problems occur frequently in the field of b@matics, particularly in the prob-
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Figure 1.6: The Sparse-Pairs Abstraction Applied to Bioinfatics

lem ofgenome assemblyery briefly, genome assembly is the problem of assembliagynsmall
fragments of DNA (hundreds of bytes each) into one long gt(iillions of bytes) that represents
the entire genomic code of an organism. This is much likeipgitbgether a jigsaw puzzle: one
must compare many pieces to each other in order to deterntirahwhould be adjacent.

In principle, one could run an All-Pairs abstraction to ca@rgoall fragments to each other, and
then match up the pieces with the best scores. However, foffigiently large problem, this is
computationally infeasible. Fortunately, there existimas heuristics that can be used to filter
out the vast majority of these comparisons![19], leavingyanlist of “candidate” sequences to
compare. This candidate list becomes thget for a Sparse-Pairs workload, as shown in Figude 1.6

The principal complication for Sparse-Pairs is that it ig generally feasible to optimize a
bulk transfer of data files to many nodes because while eahitéan is used multiple times, the
number of repetitive uses may be far less than the number désioThus, the Master must be
active in transferring data, which potentially createsraylg bottleneck at the Master’s outgoing
network link. Additionally, for fast-finishing functiongyen if the Master has sufficient bandwidth
the network latency may be too great to keep a sufficient nuiwibé/orkers satiated.

The firstissue can be alleviated with compressed data —infbionatics, the languageACGT}

can easily be compressed to two bits per basepair — or meiMaisters. The second can be im-
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proved by grouping together many functions into a singlesKtasent to the Worker in order to
prevent numerous high-latency round-trips in sending ttatpotentially thousands of functions.

Two data-related factors differentiate Sparse-Pairs footh Map and All-Pairs. First, although
the pairs are sparse, each sequence is still used many tinoeghout the workload. Thus, while
the pairs to be computed could be written in full to files in efhevery pair was a single element,
and Map could then be run using that input, this is inefficiémstead, if the set of sequences is not
too large for main memory, the sequences can be stored oogyinrtheir datafile and are read into
the Master’'s memory to construct the tasks for the Workergherily as the workload advances.

A Sparse-Pairs result is a subset of a corresponding AtlsPesult. All-Pairs can be optimized
to take advantage (via data transfer and assignment of datigouto resources) of the fact that
every single computation pair will be completed. Howeuas unnecessary to complete an entire
All-Pairs problem for every case of Sparse-Pairs, and faiqaarly sparse sets of pairs, it may be
very inefficient to do so even if the All-Pairs abstractiomighly optimized. The regular structure
of All-Pairs also allows the interface to the abstractiomequire only the function and the names
of the full sets. For Sparse-Pairs the usage is less unifeen #r the same input set size, thus
the design in which each pair should be transfered to the drosthich its computation will be
completed, rather than allowing computation to be arblfrassigned to pre-staged identical hosts.

Our Sparse-Pairs implementation is in regular use with efsamatics research group at Notre
Dame. Our largest assembly so far used 8 million sequent¢escted from a completeS8orghum
bicolor genome and completed alignments for 84 million candidatespgThe equivalent All-
Pairs would have required @4llion comparisons.) Using 512 CPUs, the assembly completed in
just under two hours, with an effective speedup of 425X [17].

1.6 The Wavefront Abstraction

So far, each of the abstractions discussed has allowed datigruto be completed in an arbitrary
order. However, more complex abstractions such as Wavelfimre dependencies, requiring one

stage of the computation to complete before another careptbc
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Figure 1.7: The Wavefront Problem Applied to Bioinformatic

Wavefront( data X, data Y, function F'( data x, datay, datad))
X i if 7=0
returns matrix Rli, j] = Y[4] ifi=0

F(R[i—1,7],R[i,j — 1],R[i — 1,7 — 1]) otherwise

Figure[l.¥Y shows th@/avefront abstraction, which is a recurrence relation in two dimensio
Given two data sets as original input, and a function tha@gakree inputs and returns a single
output, calculate the function at eachsof possible states of the system, where each state is de-
fined by the results of its predecessor states. A state’spesgors are its neighbors in a matrix,
whose values have been computed by previous function égesutThe problem can be gener-
alized to multiple dimensions. Wavefront has previouslgrstudied in the context of multicore
processor< 1], which our work has extended to clusters dmdls of multicore machine5[29].

In practice, the user invokes Wavefront by specifying theuindata sets and the recurrence
function. As before, the “function” is an arbitrary prograhat accepts files on the command line:

Wavefront XData YData RecurrenceFuncti on

Examples of Wavefront problems occur in game theory, ecac®nbioinformatics, and any
problem that involves dynamic programming. In game thearyecurrence table can be con-
structed to enumerate all possible states of a simulatidim giwen inputs. Each cell in the table
is dependent on its previous neighbor states. With a coegbkatble, economists can see the start
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states, all possible final states, and all possible pathgmitite simulated context.

A common use of Wavefront in bioinformatics is the alignmehtwo very large DNA strings.
This is done by constructing a dynamic programming tableereteach cell gives the “score”
of the alignment with each string offset by the coordinateshat cell. The alignment of two
complete genomes (billions of bytes) is intractable sridiowever, the entire problem can be
broken up into a number of smaller sub-alignment problemachEsub-problem computes the
dynamic programming table for a fragment of the genome, had passes the boundary value to
its neighbor.

In previous abstractions, the ability to predict runtimésvork units was used primarily to
provision resources. Determining which processes haveéawoitong is useful for detecting mis-
configured nodes, but a slow node at the beginning or middileeoivorkload does relatively little
damage to overall performance because there is still a leghe@ of concurrency. In Wavefront,
however, predicting runtimes takes on extra importancelodvginishing work unit in Wavefront
propagates its delay through to all of its dependents. Ehespecially harmful early in a work-
load, when most or all of the remaining computations are deeets, and there is already limited
concurrency available in the problem. To combat this, Waréfmakes use of the Work Queue’s
ability to remove, reschedule, and restart tasks that hawesignificantly beyond their predicted
completion time.

Using the Wavefront abstraction, we were able to completatiygnment of two variants of the
Anthrax genome measuring 5.4 million bytes. Each genomespiitinto 100 fragments of about
54,000 bytes, yielding a 100x100 Wavefront problem. Ushmgdloud, the problem completed in
8.3 hours instead of 13 days, achieving an effective speetiBdX.

1.7 The Directed Graph Abstraction

The abstractions that we have presented so far have a highlyar structure. However, many
users have applications that can only be describeddi®eted graph of programs. There exist
a number ofworkflow languagesthat are capable of expressing arbitrary graphs of task$, asi
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all.dat

a.dat b.dat: all.dat
split all.dat @

a.out: a.dat - )
.dat a.dat
process a. dat

b.out: b.dat @ @
process b. dat

b.out a.out

Figure 1.8: Small Example of the Makeflow Language

Dagmanl[25], Pegasus [10], Taverhal[18], Swift [30], BPE#][Zand Dryad[[12], to name a few.
Each of these languages has its own syntax, and is capabtsmoécting to a number of remote

systems.

However, we often find that end users are reluctant to learerginely new language simply
to run some programs in a particular distributed system.tupately, many are already using a
coordination language that easily expresses paralleli$ra traditionaMake [11] tool is typically
used to drive the compilation and linking of complex progsarout it can be used to drive any

arrangement of programs and files.

To this end, we designed a tool callgidkeflow that implements the Directed Graph abstraction
using the same basic language as Make. In many cases, useéakeaheir existing Makefiles and
use them unmodified with Makeflow. The Makeflow program reads directed graph, and then
submits jobs individually to be executed. By changing comdabne options, the same directed
graph can be run on a single multicore computer, on a Condar poon the Work Queue system.
Makeflow keeps a transaction log, so that in the event ofraijliine entire workload can be picked
up where it left off without losing or duplicating jobs.

Figure[L.8 shows a very small example of a Makeflow. The usersga set of rules, each
one stating a program to run, along with the files that it rezpiand the files that it uses. In the
example, the programapl i t accepts the filal | . dat as input, and produces the filas dat
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Figure 1.9: An Example Makeflow Used in Bioinformatics

andb. dat as output. Each of those is then consumed bythecess program.

Figure[1.® shows a larger example of a real Makeflow writteaupport a bioinformatics ap-
plication. In the figure, circles represent programs, angaseg represent the files that they read
and write. In this particular example, the topmost prograads a large input file and splits it into
many pieces. Each piece is then processed by a genomic sealclvhich creates three different
outputs per piece. The results must be joined together aalyzed in order to produce a final
result. The system is capable of running workloads comgjsif hundreds of thousands of nodes.

Makeflow is currently used as the primary execution engimatooinformatics research portal
at the University of Notre Dame. A typical Makeflow job exesditvia the portal consisted of 704
tasks dispatched to the Condor pool and ran on between 26+#86 on a designated cluster. The
overall workflow consumed 686 CPU-hours in 17 hours of waitkltime, reducing the runtime

from nearly a month down to less than a day.

1.8 Choosing the Right Abstraction

As we have mentioned above, some abstractions can be iateyetl with each other, with some
loss of efficiency. The formal relationship between différa@abstractions, and how to choose

amongst them, remains an open problem in our field. How, tben,a user choose which one
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to use for a given problem? So far, we have worked closely withpotential users to choose
the appropriate abstraction for their needs. With the gngwsuite of abstractions, though, it is
becoming important that users in various fields can seledti¢jint abstraction from the suite based
on their knowledge of their own problem.

The intent of providing abstractions is for the user to defiterge workload in a simple manner.
The user should be able to use codes that are very similaeatighl to their serial implementa-
tions. The user should be able to garner good performant®utihaving to separately implement
complicated resource management, data management, dhtbfatance mechanisms into each
application.

Abstractions on the whole shield the user from difficult dstabout executing a workload in a
distributed environment. However, it is often the case thatabstraction that fits the problem best
— either due to the design of the abstraction or the way a wsedhfined the problem — will be
more efficient due to less transformation required to scpléouthe cloud and because of greater
possibilities for problem-specific solution optimizatgon

Itis our general suggestion that a user should choose thaatisn that fits the way he already
thinks about his problem. This most easily fulfills the irttefi running a workload as-is, and
simply scaling up to a cloud while abstracting away the neessetails of the larger scale. This
also usually requires the least amount of user overheadrdiddhe details of transforming his
serial application into an entirely different problem befscaling it up.

An example of additional work required to transform the pewob is seen when comparing
Wavefront to a general DAG. A particular piece of a Wavefroamputation can be referenced
simply by coordinates in the results table. That ordered pdien combined with the problem
definition, is sufficient to enumerate all incoming and oungcedges in the DAG. The more gen-
eral DAG abstraction would need to define the problem in adé&sent manner, costing execution
time to complete the transcription into the more generalnitedn and also the disk/memory re-
sources to store it. Even then, when executing, a general B#g&action would still not have
the advantages of automatically being able to optimize diskmemory management to the rigid
patterns of a Wavefront problem. Thus, it only makes sensa feser who is already looking at
his workload as a Wavefront problem to use the abstractianishmost specific for that problem —



18

Runtime Runtime
Application Problem Size | on One CPU | in Cloud
Map Transform to Iris Code 58,639 irises 12.8days | 2.4 hours
All-Pairs Compare Iris Codes 58,639 irises 2 years 10 days
Sparse-Pairs Sequence Overlapping | 84 million pairs 35 days 2 hours
Wavefront Long Sequence Alignment 5.3 million bytes 13 days 8 hours
Directed Graph Parallel Genome Search 704 nodes 686 hours | 17 hours

Table 1.1: Summary of Typical Workloads

because it fits with how he has already designed his approach.

This is, however, only a general suggestion, and must balesed even when scaling up the
same workload. An example of a case in which this is impomsas shown above when discussing
the Sparse-Pairs problem. A scientist may start with ayfaieinse set of pairs to compute between
two sets, and decide to use the All-Pairs problem. Howewetha problem is scaled up and
the set of pairs becomes sparser, even though the All-Pagtsaation is still available and will
still solve the problem, it no longer is the appropriate cleoi Generalizing an arbitrary set of
computation pairs into the superset of computation paitsimérease the amount of work he
requires significantly. Not only will it require much morerte to compute all the extraneous pairs
that he isn't interested in, but the abstraction solving iv@blem will provision more remote

resources (data and worker nodes, for instance) to solvarher version.

1.9 Conclusion

In this chapter, we have demonstrated several abstradimorcdoud computing. An abstraction
allows an end user to express a very large workload in a cotrfpem, allowing the underly-
ing system to handle the complexity of allocating resourcispatching tasks, managing data,
and dealing with failures. For each abstraction, we havevahescientific application that gains

significant benefit from the cloud.

Our suite of abstractions is not necessarily complete. Qperence so far suggests that a
given community of researchers is likely to engage in thees&imds of computations, albeit
with different underlying functions and different scalelsdata. This is only natural, because
both collaborating and competing researchers may use the saderlying techniques and must
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compare their work to one another. For this reason, one orafygdractions may be sufficient to
serve a very large community of people in a given field of stuilyour institution, Map and All-
Pairs are common tasks in biometrics research, while Sgzgage and Wavefront are useful for
bioinformatics. We have found that Makeflow has broad apgiba.

We have implemented these abstractions in the Condorluistd system because it is widely
used to share computing power in academic settings. Hoyiesame concepts can be applied
to to other systems. For example, the Work Queue system cdegdeyed on any kind of cloud
computer in order to run the same set of abstractions. Rurdiistractions need not be imple-
mented with plain programs and files as we have done, but @sidbe implemented in dynamic
languages such as Java dr. @sing formal functions and datatypes. Such implementatieould
be more strongly typed and have less invocation overheadyduwid of course be restricted to the
given language.

For more information about these abstractions, the readsr consult our research publica-
tions [21,16[ 17, 29]. Code implementing these abstrastaam be downloaded from the Coop-
erative Computing Lab at the University of Notre Damehat p: / / ccl . cse. nd. edu. The
Condor distributed computing software is available from thmiversity of Wisconsin at
http://ww. cs. w sc. edu/ condor.
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