
Introduction to Makeflow
and Work Queue

Nick Hazekamp
University of Notre Dame
nhazekam@nd.edu

Go to http://ccl.cse.nd.edu
 and Click on ACIC Tutorial

2

http://ccl.cse.nd.edu

The Cooperative Computing Lab

3

▰ We collaborate with people who have large scale computing
problems in science, engineering, and other fields.

▰ We operate computer systems on the O(10,000) cores:
clusters, clouds, grids.

▰ We conduct computer science research in the context of real
people and problems.

▰ We develop open source software for large scale distributed
computing.

http://ccl.cse.nd.edu

Outline

4

Tuesday, Nov 14th

▰ Thinking Opportunistically

▰ Overview of the Cooperative Computing
Tools

▰ Makeflow

▰ Makeflow + Work Queue

▰ Hands-On Tutorial

Thursday, Nov 16th

▰ Makeflow Features

▻ Resource Management

▻ Containers

▰ Work Queue API

▰ Hands-On Tutorial

Thinking Opportunistically

5

Opportunistic Computing

6

▰ Much of scientific computing is done in conventional computing centers
with a fixed operating environment with professional sysadmins.

▰ But, there exists a large amount of computing power available to end
users that is not prepared or tailored to your specific application:

▻ National HPC facility

▻ Campus-level cluster and batch system.

▻ Volunteer computing systems: Condor, BOINC, etc.

▻ Cloud services.

▰ Can we effectively use these systems for “long tail” scientific
computing?

Opportunistic Challenges

7

▰ When borrowing someone else’s machines, you cannot change the OS
distribution, update RPMs, patch kernels, run as root…

▰ This often puts important technology just out of reach of the end user, e.g.:

▻ FUSE might be installed, but without setuid binary.

▻ Docker might be available, but you aren’t a member of the required Unix group.

▰ The resource management policies of the hosting system may work against
you:

▻ Preemption due to submission by higher priority users.

▻ Limitations on execution time and disk space.

▻ Firewalls only allow certain kinds of network connections.

Backfilling HPC with Condor at Notre Dame

8

Users of Opportunistic Cycles

9

10

I can get as many machines
on the cloud/grid as I want!

How do I organize my application
to run on those machines?

Cooperative Computing
Tools

11

Our Philosophy

12

▰ Harness all available resources: desktops, clusters, clouds, and grids.

▰ Make it easy to scale up from one desktop to national scale infrastructure.

▰ Provide familiar interfaces that make it easy to connect existing apps
together.

▰ Allow portability across operating systems, storage systems, middleware…

▰ Make simple things easy, and complex things possible.

▰ No special privileges required.

A Quick Tour of the CCTools

13

▰ Open source, GNU General Public License.

▰ Compiles in 1-2 minutes, installs in $HOME.

▰ Runs on Linux, Solaris, MacOS, FreeBSD, …

▰ Interoperates with many distributed computing systems.
▻ Condor, SGE, Torque, Globus, iRODS, Hadoop…

▰ Components:
▻ Makeflow – A portable workflow manager.

▻ Work Queue – A lightweight distributed execution system.

▻ Parrot – A personal user-level virtual file system.

▻ Chirp – A user-level distributed filesystem.

http://ccl.cse.nd.edu/software

MAKEFLOW (MAKE + WORKFLOW)

14

▰ Provides portability across batch systems.

▰ Enable parallelism (but not too much!)

▰ Fault tolerance at multiple scales.

▰ Data and resource management.

Makeflow

Local Condor SGE Work
Queue

http://ccl.cse.nd.edu/software/makeflow

Work Queue API

#include “work_queue.h”
while(not done) {

 while (more work ready) {
 task = work_queue_task_create();
 // add some details to the task
 work_queue_submit(queue, task);
 }

 task = work_queue_wait(queue);
 // process the completed task
}

15http://ccl.cse.nd.edu/software/workqueue

Parrot Virtual File System

16

Unix
Appl

Parrot Virtual File System

Local iRODS Chirp HTTP CVMFS

Capture System
Calls via ptrace

/home = /chirp/server/myhome
/software = /cvmfs/cms.cern.ch/cmssoft

File Access Tracing
Sandboxing
User ID Mapping
. . .

Custom Namespace

http://ccl.cse.nd.edu/software/parrot

Lots of Documentation

17http://ccl.cse.nd.edu

Makeflow
A Portable Workflow System

18

MAKEFLOW (MAKE + WORKFLOW)

19

▰ Provides portability across batch systems.

▰ Enable parallelism (but not too much!)

▰ Trickle out work to batch system

▰ Fault tolerance at multiple scales.

▰ Data and resource management.

Makeflow

Local Condor SGE Work
Queue

MAKEFLOW (MAKE + WORKFLOW)
BASED OFF AN OLD IDEA: MAKEFILES

part1 part2 part3: input.data split.py
 ./split.py input.data

out1: part1 mysim.exe
 ./mysim.exe part1 >out1

out2: part2 mysim.exe
 ./mysim.exe part2 >out2

out3: part3 mysim.exe
 ./mysim.exe part3 >out3

result: out1 out2 out3 join.py
 ./join.py out1 out2 out3 > result

20

Makeflow Syntax

21

[output files] : [input files]

[command to run]

sim.exe
in.dat

calib.dat
out.txt

sim.exe in.dat –p 50 > out.txt

One Rule

out.txt : in.dat
sim.exe in.data –p 50 > out.txt

Not Quite Right!out.txt : in.dat calib.dat sim.exe
sim.exe in.data –p 50 > out.txt

Makeflow Syntax : sims.mf

22

out.10 : in.dat calib.dat sim.exe
sim.exe –p 10 in.data > out.10

out.20 : in.dat calib.dat sim.exe
sim.exe –p 20 in.data > out.20

out.30 : in.dat calib.dat sim.exe
sim.exe –p 30 in.data > out.30

How to run a Makeflow

23

• Run a workflow locally (multicore?)

– makeflow -T local sims.mf

• Clean up the workflow outputs:

– makeflow –c sims.mf

• Run the workflow on Torque:

– makeflow –T torque sims.mf

• Run the workflow on Condor:

– makeflow –T condor sims.mf

Visualization with DOT

24

• makeflow_viz –D example.mf > example.dot
• dot –T gif < example.dot > example.gif

DOT and related tools:
http://www.graphviz.org

Makeflow Shapes a Workflow

25

Millions of Tasks

Makeflow
Batch

System

TT

T T

Concurrency
Control Thousands of Nodes

Transaction
Log

Precise
Cleanup

Performance
Monitoring

Example: Biocompute Portal

26
Makeflow

Condor
Pool

TT

T T

Transaction
Log

Progress
Bar

Update
Status

Run
Makeflow

Generate
Makeflow

BLAST
SSAHA
SHRIMP
EST
MAKER
…

Makeflow Applications

27

▰ Bioinformatics

▰ Biometrics

▰ High Energy Physics

Makeflow + Work Queue

28

A Portable Workflow System

MAKEFLOW

XSEDE
Torque
Cluster

Campus
Condor

Pool

Public
Cloud

Provider

Private
Cluster

Makefile

Makeflow

Local Files and
Programs 29

???

???makeflow -T torque

makeflow -T condor

MAKEFLOW + WORK QUEUE

XSEDE
Torque
Cluster

Campus
Condor

Pool

Public
Cloud

Provider

Private
Cluster

Makefile

Makeflow

Local Files and
Programs

W

W
W

WW

WWW

W

W

30

W

W

W
submit

tasks Thousands of
Workers in a

Personal Cloud

WORK QUEUE

31

XSEDE
Torque
Cluster

Campus
Condor

Pool

Public
Cloud

Provider

Private
Cluster

Master

Tasks

W

W
W

WW

WWW

W

W

W

W

W
Thousands of
Workers in a

Personal Cloud

submit
tasks

Application

API

Advantages of Work Queue

32

▰ Harness multiple resources simultaneously.
▰ Hold on to cluster nodes to execute multiple tasks rapidly.

▻ (ms/task instead of min/task)
▰ Scale resources up and down as needed.
▰ Better management of data, with local caching for data

intensive tasks.
▰ Matching of tasks to nodes with data.

Makeflow and Work Queue

33

To start the Makeflow

% makeflow –T wq sims.mf

Could not create work queue on port 9123.

% makeflow –T wq –p 0 sims.mf

Listening for workers on port 8374…

To start one worker:

% work_queue_worker master.hostname.org 8374

Start 25 Workers in Batch System

34

Submit workers to Condor:

condor_submit_workers master.hostname.org 8374 25

Submit workers to SGE:

sge_submit_workers master.hostname.org 8374 25

Submit workers to Torque:

torque_submit_workers master.hostname.org 8374 25

Keeping track of port
numbers gets old fast…

35

Project Names

36

Master
Port 4057 Worker

Catalog

Connect to
chameleon:4057

QueryAdvertise

makeflow …
-N myproject

work_queue_worker
-N myproject

work_queue_status
Query

“myproject”
is at chameleon:4057

Project Names

37

Start Makeflow with a project name:

% makeflow –T wq –N myproject sims.mf

Listening for workers on port XYZ…

Start one worker:

% work_queue_worker -N myproject

Start many workers:

% torque_submit_workers –N myproject 5

work_queue_status

38

Advantages of Work Queue

39

▰ MF +WQ is fault tolerant in many different ways:

▻ If Makeflow crashes (or is killed) at any point, it will recover by reading the
transaction log and continue where it left off.

▻ Makeflow keeps statistics on both network and task performance, so that
excessively bad workers are avoided.

▻ If a worker crashes, the master detects failure and restarts the task elsewhere.

▻ Workers can be added and removed at any time during workflow execution.

▻ Multiple masters with the same project name can be added and removed while
the workers remain.

▻ If the worker sits idle for too long (default 15m) it will exit, so as
not to hold resources idle.

Alternative Makeflow
Formats

40

Utilizing JSON/JX for easier scripting

Makeflow JSON Syntax

41

▰ Verbose flexible structure

▰ Familiar structure

▰ Consists of four items:

▻ "categories": Object<Category>

▻ "default_category": String

▻ "environment": Object<String>

▻ "rules": Array<Rule>

Makeflow JSON Syntax

42

{
"outputs": [{"path": "out.txt"}],
"inputs": [{"path": "in.dat"}, {"path": "calib.dat"}, {"path": "sim.exe"}]
"command": "sim.exe –p 50 in.data > out.txt",

}

sim.exe
in.dat

calib.dat
out.txt

sim.exe in.dat –p 50 > out.txt

Makeflow JSON Syntax

43

{
"outputs": [{"path": "out_10.txt"}],
"inputs": [{"path": "in.dat"}, {"path": "calib.dat"}, {"path": "sim.exe"}]
"command": "sim.exe –p 10 in.data > out_10.txt",

},
{

"outputs": [{"path": "out_20.txt"}],
"inputs": [{"path": "in.dat"}, {"path": "calib.dat"}, {"path": "sim.exe"}]
"command": "sim.exe –p 20 in.data > out_20.txt",

},...

Makeflow JSON Rule

44

▰ "inputs": Array<File>
▰ "outputs": Array<File>
▰ "command": String
▰ "local_job": Boolean
▰ "category": String
▰ "resources": Resources
▰ "allocation": String
▰ "environment": Object<String>

Makeflow JX Syntax

45

▰ Allows for more compact makeflows.
▻ Provides functions for expanding tasks: range, variables, etc...

▰ Can be used as templates in conjunction with an arguments file.
▰ Useful for consistently structure data and different data.

Makeflow
Batch

System

Args.jx

Args.jx

Args.jx

Makeflow JX Syntax

46

{
"outputs": [{"path": format("out_%d.txt", i)}],
"inputs": [{"path": "in.dat"}, {"path": "calib.dat"}, {"path": "sim.exe"}]
"command": format("sim.exe –p %d in.data > out_%d.txt", i),

} for i in range(10, 30, 10),

How to run a Makeflow

47

• Run a workflow from json

– makeflow --json sims.json

• Clean up the workflow outputs:

– makeflow –c --json sims.json

• Run the workflow from jx:

– makeflow --jx sims.jx

• Run the workflow with jx and args:

– makeflow --jx sims.jx --jx-args args.jx

Resource Management

48

Allowing tasks to share resources

Why Manage Resource?

49

▰ More accurate accounting and provisioning.

▰ Allows for multi-tenant situations.

▰ Provides consistent resources to tasks.

▻ Prevents slower execution.

▻ Mitigate failures from under provisioning.

How can this happen?

Makeflow Resource Specification

50

▰ Category

▻ Cores

▻ Memory

▻ Disk

…
CATEGORY=analysis
DISK=1024
MEMORY=1024
CORES=1

out1: part1 mysim.exe
 ./mysim.exe part1 >out1

out2: part2 mysim.exe
 ./mysim.exe part2 >out2

...

Makeflow Resource Specification

51

▰ Category

▻ Cores

▻ Memory

▻ Disk

…
CATEGORY=analysis
DISK=1024
MEMORY=1024
CORES=1

out1: part1 mysim.exe
 ./mysim.exe part1 >out1
…

CATEGORY=join
DISK=2048
MEMORY=2048
CORES=2

result: out1 out2 out3 join.py
 ./join.py out1 out2 out3 > result

Work Queue Workers

52

Worker

Cores

Cache

Makeflow

Task

Task

Run
Makeflow

Create
Tasks

Submit Tasks

Work Queue Multi-tenant Workers

53

Same a regular worker!

Cores

Cache

Makeflow

Task
C:1

Task
C:1

Task
C:1

Task
C:1Create Labeled

Task

Run
Makeflow

Submit Tasks

Work Queue Multi-tenant Workers

54

Same a regular worker!

Cores

Cache

Makeflow

Task
C:2

Task
C:1

Task
C:1

Task
C:2

Run
Makeflow

Submit Tasks

Create Labeled
Task

Resource Monitor

55

▰ Watches process to ensure correct resource usage

▰ Evict jobs that act outside of resource allocation

▰ Report actual usage for future calibration

▰ Can be used in conjunction with Makeflow to automate an accurate image
size.

Container Integration

56

Providing consistent environments

Containers Create Precise Execution Environments

57

docker run ubuntu-38.23 mysim.exe

Code

Libraries

Kernel

Code

Libraries

Kernel

Ubuntu-38.23
image

Container
Environment

mysim.
exe

Approaches to Containers with Makeflow

58

▰ Approach 1:

▻ Create containers for starting MF and WQ, then let them run as normal.

▻ You are responsible for moving container images responsibly.

▰ Approach 2:

▻ Let MF create containers as needed for each task.

▻ Provides more control over moving container images.

▻ Sending and staring up containers for each task.

Approach 1: Container for MF/WQ

59

Tasks

docker run ubuntu makeflow

Makeflow

docker run ubuntu work_queue_worker

Worker

T T T

Approach 2: Container for Each Task

60

Tasks

Makeflow
Batch

System

Docker Image:
ubuntu-38.23

T T

T T

makeflow --docker ubuntu-38.23 –T sge . . .

Container Technology is Evolving

61

docker dockerd

singular

container

container

Container runs directly as a child process
(still needs setuid tool, though)

singularity exec ubuntu command

Installed service running as root

docker run ubuntu command

docker.io

singularity.lbl.gov

Approach 2 using Singularity

62

Tasks

Makeflow
Batch

System

Singularity mage:
ubuntu.img

T T

T T

makeflow --singularity ubuntu.img –T sge . . .

Cloud Operation

63

Methods to Deploying

Approaches to Cloud Provisioning with Makeflow

64

▰ Approach 1:

▻ MF creates unique instance for each task.

▻ Provides complete isolation between tasks.

▻ Requires startup and tear-down time of instances.

▰ Approach 2:

▻ Create instances and run WQ Workers on them, submitting to WQ from MF.

▻ Relies on WQ for task isolation, but caches shared files.

▻ Instance management relies on the user.

Approach 1: Individual instances per task

65

Tasks

Makeflow
Batch

System

T T

T T

Start
Inst.

Run
Task

Kill
Inst.

Run Makeflow Submit Tasks

makeflow -T amazon --amazon-config my.config ...

Approach 2: Individual instances per worker

66

Tasks

Makeflow
Batch

System

W W

W W

Start
Inst.

Run
Worker

Kill
Inst.

Worker

T T T

Run Makeflow
Submit
Tasks

Create
Workers

work_queue_factory -T amazon --amazon-config my.config
...

67

Questions?
Nick Hazekamp
Email : nhazekam@nd.edu

CCL Home : http://ccl.cse.nd.edu
Tutorial Link : http://ccl.cse.nd.edu/software/tutorials/acic17

mailto:nhazekam@nd.edu

