UNIVERSITY OF
&) NOTRE DAME

Introduction to Makeflow
and Work Queue

CCTools

Nick Hazekamp
University of Notre Dame .~
nhazekam@nd.edu

e

The Cooperative Computing Lab

Go to http://ccl.cse.nd.edu
and Click on ACIC Tutorial

Software | Download | Manuals | Forum | Papers

Goto L@ACIC 2017 Tutorial @Makeﬂow and Work Queue, Nov 14th and 16th!

About the CCL

‘We design software that enables our collaborators to easily harness large scale distributed
systems such as clusters, clouds, and grids. We perform fundamental computer science research
that enables new discoveries through computing in fields such as physics, chemistry,
bioinformatics, biometrics, and data mining.

CCL News and Blog

+ Automatic job sizing for maximum throughput (26 Oct 2017)
« Makeflow Feawre: IX Representation (18 Oct 2017)

« Announcement: CCTools 6.2.0 released (09 Oct 2017)

» 2017 DISC Summer REU Conclusion {30 Aug 2017)

+» Announcement: CCTools 6.1.6 released (29 Aug 2017)

» Talk at ScienceCloud Workshop (27 Jun 2017)

+ Congrads to Ph.D Graduates (22 May 2017}

+ Announcement: CCTools 6.1.0. released (17 May 2017)

» Makeflow and Mesos Paper at CCGrid 2017 (05 May 2017)

* (MOr¢ NEWS

J

ol mires I
ol
=3

Community Highlight

Lifemapper is a high-throughput, webservice-based, single- — =
and multi-species modeling and analysis system designed at Q
the Biodiversity Institute and Natural History Museum, - R

1

University of Kansas. Lifemapper was created to compute
and web publish, species distribution models using available
online species occurrence data. Using the Lifemapper
platform, known species localities georeferenced from
museum specimens are combined with climate models to
predict a species’ “niche” or potential habitat availability, under current day and future climate
change scenarios. By assembling large numbers of known or predicted species distributions,
along with phylogenetic and biogeographic data, Lifemapper can analyze biodiversity, species
communities, and evolutionary influences at the landscape level.

Lifemapper has had difficulty scaling recently as our projects and analyses are growing
exponentially. For a large proof-of-concept project we deployed on the XSEDE resource
Stampede at TACC, we integrated Makeflow and Work Queue into the job workflow. Makeflow
simplified job dependency management and reduced job-scheduling overhead, while Work
Queue scaled our computation capacity from hundreds of simultaneous CPU cores to thousands.
This allowed us to perform a sweep of computations with various parameters and high-
resolution inputs producing a plethora of outputs to be analyzed and compared. The experiment
worked so well that we are now integrating Makeflow and Work Queue into our core
infrastructure. Lifemapper benefits not only from the increased speed and efficiency of
computations, but the reduced complexity of the data management code, allowing developers to
focus on new analyses and leaving the logistics of job dependencies and resource allocation to
these tools.

Information from C.J. Grady, Biodiversity Institute and Natural History Museum, University of
Kansas.

http://ccl.cse.nd.edu

@ﬁg The Cooperative Computing Lab

We collaborate with people who have large scale computing
problems in science, engineering, and other fields.

\We operate computer systems on the O(10,000) cores:
clusters, clouds, grids.

We conduct computer science research in the context of real
people and problems.

We develop open source software for large scale distributed
computing.

http://ccl.cse.nd.edu

Tuesday, Nov 14th
Thinking Opportunistically

Overview of the Cooperative Computing
Tools

Makeflow
Makeflow + Work Queue

Hands-On Tutorial

Thursday, Nov 16th
Makeflow Features
Resource Management
Containers
Work Queue AP
Hands-On Tutorial

Thinking Opportunistically

@g@gg Opportunistic Computing

Much of scientific computing is done in conventional computing centers
with a fixed operating environment with professional sysadmins.

But, there exists a large amount of computing power available to end
users that is not prepared or tailored to your specific application:

National HPC facility

Campus-level cluster and batch system.

Volunteer computing systems: Condor, BOING, etc.
Cloud services.

Can we effectively use these systems for “long tail” scientific
computing?

@g@gg Opportunistic Challenges

When borrowing someone else’s machines, you cannot change the 0OS
distribution, update RPMs, patch kernels, run as root...

This often puts important technology just out of reach of the end user, e.qg.:
FUSE might be installed, but without setuid binary.
Docker might be available, but you aren't a member of the required Unix group.

The resource management policies of the hosting system may work against
you:

Preemption due to submission by higher priority users.
Limitations on execution time and disk space.

Firewalls only allow certain kinds of network connections. &

Backfilling HPC with Condor at Notre Dame

9000 — AR O S5 [T - - 7] I L B L — S —

8000 | H]ﬂ 8000

7000 |I|l I 1| 7000

| I 1)
. 6000 I I I J I I I G000
=N
% 5000 —' .jl | | | lI :ll | | i ll 5000
8 4000 |- ' 1 ! ll |l Ill’1 |l 1 A‘ \ l“l‘ 4000
1 | | i
3 I |
< 3000 1 | d lll I;i l, | | [:FI| r ! ‘ I III ' || I'.I! L i{ . 3000
| . I 1R
2000 ! ‘I | IR & HN‘ R | ¥ ’ T‘ ‘ ' 2000
i
1000 ' '
0 it by

0

01 01 01 01 01 01 01 01 01 01 01 01
Apr May Jun Jul Aug Sep Oct Nov Dec lan Feb Mar

Users of Opportunistic Cycles

Notre Dame

Condor Status | reees i e e e e | s 2 i s
EEEE SN N § S NN
el EEEEEEEEEEn S AR
Slots Cores — P ———— BN ——

[]
mzhudi@nd edu 1465 1465 sams = M
B awoodard@nd.edu 67 1072 = mr—
M jsarro@nd.edu 170 B8O
khuang3@nd.edu 527 527

.]
B hhatami@nd. edu 426 426 ang iNSEEEEEEE: E
I B T T e e e,

‘;EWEE11@nd'EdU EB? EB? | L —— E———" S S E— [—) (L ——
K 4 d.ed 123 123 [TTIT] T S 0 0 EEOEEAEEAEEEEE mEm
i Mannon@ind adu T IR
N S A i PNy 49 HEEEEEN
Unclamed BEI dda EEEEENEREEEEEEEEEE AN . ¢ ¢ ¢ [‘¢ ¢ fi] 7 I
USRI DT (PETETEAY AT e LISRTe [

Matched 1 6 Er—— AT e) () LT a—
[i=4] Preemptin 3 3 EEERNEENEEEEEN | P —— E— ANEEEEEEEE [TITLr I i] ==]
- I:I g e e e I P i e R R =

TR P e #]
Cwrner 5 573 e —— e

Total A1 B0 | M e — ——

Display Options
LRl
I EEEEEEES
Sort e e s
Show:
Size
Scale

| can get as many machines
on the cloud/grid as | want!

How do | organize my application
to run on those machines?

Cooperative Computing
Tools

{C% Our Philosophy

Harness all available resources: desktops, clusters, clouds, and grids.
Make it easy to scale up from one desktop to national scale infrastructure.

Provide familiar interfaces that make it easy to connect existing apps
together.

Allow portability across operating systems, storage systems, middleware...
Make simple things easy, and complex things possible.

No special privileges required.

% A Quick Tour of the CCTools

Open source, GNU General Public License.
Compiles in 1-2 minutes, installs in SHOME.
Runs on Linux, Solaris, MacQOS, FreeBSD, ..

Interoperates with many distributed computing systems.
Condor, SGE, Torque, Globus, iRODS, Hadoop..

Components: http://ccl.cse.nd.edu/software

Makeflow - A portable workflow manager.

Work Queue - A lightweight distributed execution system.

Parrot — A personal user-level virtual file system.

Chirp — A user-level distributed filesystem.

MAKEFLOW (MAKE + WORKFLOW)

=
Jsplit.py

Provides portability across batch systems.

Enable parallelism (but not too much!)

Fault tolerance at multiple scales.

Data and resource management.

Makeflow

Queue

http://ccl.cse.nd.edu/software/makeflow ~

Work Queue API

#include "work_queue.h’
while(not done) {

while (more work ready) {

task = work_queue_task_create();
// add some details to the task
work_gueue_submit(queue, task);

j

task = work_queue_wait(queue);
// process the completed task

)
http://ccl.cse.nd.edu/software/workqueue ~

Parrot Virtual File System

Custom Namespace

/home = /chirp/server/myhome
/[software = /cvmfs/cms.cern.ch/cmssoft

Capture System
‘ Calls via ptrace ‘
Parrot Virtual File System File Access Tracing
Sandboxing
User ID Mapping
IRODS HTTP CVMFS [

http://ccl.cse.nd.edu/software/parrot ~

Lots of Documentation

@) The Cooperative Comput. %

< c

Thu

—_

About th

We design ¢
large scale ¢
perform fun
discoveries
bicmformat

CCL Ney

Open £
DeltalD
Schem
Packag
CCToc
Deitall
Journa
CCLP
Towari

Researc

Pap

Projec

TR Y
‘E
fae]
=]

fes}
*
G e
(=]

1@ Makeflow = Make + Worl x

= c

CCL Home
Research

Papers
Project
People
Jobs
REU

Software

P
&
ﬁ"
&
=4

Community

Highlig
Annual
Worlesl
Getting
Mailing
For De|

Operations

[makeflow(1) *®

L = C | [cd.cse.nd.edu/software/manuals/man/makeflow.html s =

makeflow(1)

NAME

makeflow - workflow engine for executing distributed workflows

SYNOPSIS

makeflow [options] <dagfilex>
DESCRIPTION

Makeflow 15 a workflow engine for distributed computing. It accepts a specification of a large amount of work to be performed. and runs it on remote
machines m parallel where possible. In addition. Malkeflow is fault-tolerant. so vou can use it to coordinate very large tasks that may run for days or
weeks in the face of failures. Makeflow is designed to be sumilar to Make. so if you can write a Makefile. then you can wnite a Makeflow.

You can run a Makeflow on vour local machine to test it out. If yvou have a multi-core machine. then you can min multiple tasks simultaneously. If vou

have a Condor pool or a Sun Grid Engine batch system. then vou can send vour jobs there to run. If yvou don't already have a batch svstem. Makeflow
comes with a svstem called Worlk Queue that will let vou distribute the load across any collection of machines. large or small

When makeflow 1s ran without arguments. it will attempt to execute the worldlow specified by the Makeflow dagfile using the local execution engine.
Commands

-c, --clean Clean up: remove logfile and all targets

T http://ccl.cse.nd.edu

. A = TR

A Portable Workflow System

MAKEFLOW (MAKE + WORKFLOW)

Provides portability across batch systems.

=
. Enable parallelism (but not too much!)
Jsplitpy
Trickle out work to batch system

Fault tolerance at multiple scales.

Data and resource management.

Makeflow
Queue

result

MAKEFLOW (MAKE + WORKFLOW)
BASED OFF AN OLD IDEA: MAKEFILES

@ input.data

result

part1 part2 part3: input.data split.py
/split.py input.data

out1: part1 mysim.exe
/mysim.exe part1 >out

out2: part2 mysim.exe
./mysim.exe part2 >out2

out3: part3 mysim.exe
/mysim.exe part3 >out3

result: out1 out? out3 join.py
Jjoin.py out1 out? out3 > result

Makeflow Syntax

[output files] : [input files]
One Rule

[command to run]
calib.dat

sim.exe out.txt

in.dat

sim.exe in.dat —p 50 > out.txt

out.txt : in.dat
sim.exe in.data —p 50 > out.txt

Makeflow Syntax : sims.mf

out. :in.dat calib.dat sim.exe
sim.exe—p in.data > out.

out. :in.dat calib.dat sim.exe
sim.exe—p in.data > out.

out. :in.dat calib.dat sim.exe
sim.exe—p in.data > out.

How to run a Makeflow

* Run a workflow locally (multicore?)
— makeflow -T local sims.mf
* Clean up the workflow outputs:
— makeflow —c sims.mf
e Run the workflow on Torque:
— makeflow —T torque sims.mf
* Run the workflow on Condor:
— makeflow =T condor sims.mf

Visualization with DOT

* makeflow_viz —D example.mf > example.dot
e dot-Tgif< example dot > example glf

— ——— —

l—-'—u.'-‘-r'-
.-—-—l-

.._wh..—lr >
:‘_ "ﬂw .ﬂr-'-—_.___ ':____.-ﬂ'
L] L] L] i S — .

DOT;-énd relate'd:tools:
http://www.graphviz.org

Makeflow Shapes a Workflow

Concurrency
Control Thousands of Nodes

Millions of Tasks

Precise Transaction Performance
Cleanup els) Monitoring

E Example: Biocompute Portal

BLAST
SSAHA
SHRIMP
EST
MAKER

-' : Progress
N : - o Bar
Generate Transaction
Ma_keflow Log
Update T
4 Run
R Status Condor
- Makeflow Pool

=

{4 Makeflow Applications

Bioinformatics

Biometrics

High Energy Physics

Makeflow + Work Queue

A Portable Workflow System

MAKEFLOW

Makefile XSEDE Private
Torque

Cluster
Cluster

Public
Cloud
Provider

Local Files and
Programs

MAKEFLOW + WORK QUEUE

Makefile xs@P (w o
lorque ".Iusterm

submit lustr

Thousands of
Makeflow -
——— Workers in a

Personal Cloud
Cg'r- f ’Publicm

Il_ Condor Cloud
=n

Local Files and
Programs

WORK QUEUE

Application XS” Grrivate
AP 60”1”6 uster P

lustr
Thousands of

IFFTasks submit = Workers in a

tasks

0 / Personal Cloud
Condor Cloud

@ﬁg Advantages of Work Queue

Harness multiple resources simultaneously.

Hold on to cluster nodes to execute multiple tasks rapidly.
(ms/task instead of min/task)
Scale resources up and down as needed.

Better management of data, with local caching for data
intensive tasks.

Matching of tasks to nodes with data.

{4 Makeflow and Work Queue

To start the Makeflow
% makeflow =T wg sims.mf

Could not create work queue on port 9123.

% makeflow =T wg —p 0 sims.mf

Listening for workers on port 8374..

To start one worker:
% work_queue_worker master.hostname.org 8374 S

{C% Start 25 Workers in Batch System

Submit workers to Condor:

condor_submit_workers master.hostname.org 8374 25

Submit workers to SGE:

sge_submit_workers master.hostname.org 8374 25

Submit workers to Torque:

torque_submit_workers master.hostname.org 8374 25

Keeping track of port
numbers gets old fast...

{4 Project Names

makeflow ... work _queue_worker
-N myproject -N myproject

Connect to
Master chameleon:4057

Port 4057

Worker

Advertise

Query

work_queue_status Catalog

“myproject”
is at chameleon:4057 N

{4 Project Names

Start Makeflow with a project name:
% makeflow =T wg —N myproject sims.mf

Listening for workers on port XYZ...

Start one worker:

% work_queue_worker -N myproject

Start many workers:
% torque_submit_workers =N myproject 5 g

% work_queue_status

. /work queue status
PROJECT NAME WAITING BUSY COMPLETE WORKERS
awe-£fip35 fahnd04.c ile 718 1882 1206967 1882
Ihfeng-gromacs-10ps] - 4980 0 1280240 e
hfeng2-alas 2404 0 1234514 140
forcebalance 1082
torcebalance 0
fg-tutorial 3

KR |

F
i

0
H
fa

el
0

=
o 0

i

ta

" T

O

H

[

(7]
O
H

s s |
H- i
= a8
@

¥
H
0

="

1 Iy = =

'_I
0]
Mttt E e
I'hl..
= |

(1]
=)

'_I
a o
|_|.
=)
Hhy
=
=
1

{4 Advantages of Work Queue

MF +WQ is fault tolerant in many different ways:

If Makeflow crashes (or is killed) at any point, it will recover by reading the
transaction log and continue where it left off.

Makeflow keeps statistics on both network and task performance, so that
excessively bad workers are avoided.

If a worker crashes, the master detects failure and restarts the task elsewhere.
Workers can be added and removed at any time during workflow execution.

Multiple masters with the same project name can be added and removed while
the workers remain.

If the worker sits idle for too long (default 15m) it will exit, so as
not to hold resources idle. N 4

Alternative Makeflow
Formats

Utilizing JSON/JX for easier scripting

Makeflow JSON Syntax

Verbose flexible structure

Familiar structure

Consists of four items:
‘categories”: Object<Category>
"default_category": String
"environment”: Object<String>

‘rules™: Array<Rule>

Makeflow JSON Syntax

calib.dat
sim.exe out.txt

sim.exe in.dat —p 50 > out.txt

Makeflow JSON Syntax

{
"outputs": [{"path": "out_10.txt"}],
"inputs": [{"path": "in.dat"}, {"path": "calib.dat"}, {"path": "sim.exe"}]
"command": "sim.exe —p 10 in.data > out_10.txt",

b

{

"outputs": [{"path": "out_20.txt"}],
"inputs": [{"path": "in.dat"}, {"path": "calib.dat"}, {"path": "sim.exe"}]
"command": "sim.exe —p 20 in.data > out_20.txt",

| .

Makeflow JSON Rule

"inputs”: Array<File>
‘outputs”: Array<File>
‘command": String
"local_job": Boolean
‘category”: String

‘resources’: Resources
"allocation”™: String
"environment": Object<String>

VELCHINTI) @3 E)

Allows for more compact makeflows.

Provides functions for expanding tasks: range, variables, etc...
Can be used as templates in conjunction with an arguments file.
Useful for consistently structure data and different data.

Makeflow JX Syntax

How to run a Makeflow

Run a workflow from json
— makeflow --json sims.json

Clean up the workflow outputs:
— makeflow —c --json sims.json

Run the workflow from jx:
— makeflow --jx sims.jx

Run the workflow with jx and args:
— makeflow --jx sims.jx --jx-args args.jx

Resource Management

Allowing tasks to share resources

@g@é’g Why Manage Resource?

More accurate accounting and provisioning.

Allows for multi-tenant situations.

Provides consistent resources to tasks.
Prevents slower execution.

Mitigate failures from under provisioning.

How can this happen?

{4 Makeflow Resource Specification

Category
Cores
Memory
Disk

CATEGORY=analysis
DISK=1024
MEMORY=1024
CORES=1

outT: partT mysim.exe
/mysim.exe part1 >out]

out2: part2 mysim.exe
/mysim.exe part2 >out?

{4 Makeflow Resource Specification

Category
Cores
Memory
Disk

CATEGORY=analysis
DISK=1024
MEMORY=1024
CORES=T

out1: partT mysim.exe
/mysim.exe part1 >out]

CATEGORY=join
DISK=2048
MEMORY=2048
CORES=2

result: out out? out3 join.py
join.py out1 out? out3 > result

% Work Queue Workers

Worker

Cache

Makeflow
Submit Tasks

=

Cores

Create

‘ Tasks

% Work Queue Multi-tenant Workers

P Same a reqular worker!
Run

Makeflow

Cores

Kl'ask
Create Labeled \C 1

Task

% Work Queue Multi-tenant Workers

P Same a reqular worker!
Run

Makeflow
Submit Tasks

=

Cores
Create Labeled

- SO

&l py

% Resource Monitor

Watches process to ensure correct resource usage
Evict jobs that act outside of resource allocation
Report actual usage for future calibration

Can be used in conjunction with Makeflow to automate an accurate image
size.

Container Integration

Providing consistent environments

{C% Containers Create Precise Execution Environments

docker run ubuntu-38.23 mysim.exe

C N

Code

Libraries

Kernel

<)

Ubuntu-38.23 Container
image Environment

@g@é’g Approaches to Containers with Makeflow

Approach 1:
Create containers for starting MF and WQ, then let them run as normal.
You are responsible for moving container images responsibly.
Approach 2:
Let MF create containers as needed for each task.
Provides more control over moving container images.

Sending and staring up containers for each task.

Approach 1: Container for MF/WQ

docker run ubuntu makeflow

docker run ubuntu work _queue_worker

Approach 2: Container for Each Task

Docker Image:
ubuntu-38.23

Tasks

S

makeflow --docker ubuntu-38.23 —T sge . . .

Container Technology is Evolving

docker run ubuntu command

docker dockerd container

docker

docker.io

Installed service running as root

singularity exec ubuntu command

container

)) Container runs directly as a child process
singularity.lbl.gov (still needs setuid tool, though) 4

Approach 2 using Singularity

Singularity mage:
ubuntu.img

Tasks

S

makeflow --singularity ubuntu.img —T sge . . .

Cloud Operation

Methods to Deploying

@g@é’g Approaches to Cloud Provisioning with Makeflow

Approach 1:
MF creates unique instance for each task.
Provides complete isolation between tasks.
Requires startup and tear-down time of instances.
Approach 2:
Create instances and run WQ Workers on them, submitting to WQ from MF.
Relies on WQ for task isolation, but caches shared files.

Instance management relies on the user.

Approach 1: Individual instances per task

Tasks pun Makeflow

makeflow -T amazon --amazon-config my.config ...
4

Approach 2: Individual instances per worker

Worker

Run
Worker

Create
Workers

work_queue_factory -T amazon --amazon-config my.config

— CCTools

Nick Hazekamp
Email : nhazekam@nd.edu

CCL Home : http://ccl.cse.nd.edu
Tutorial Link : http://ccl.cse.nd.edu/software/tutorials/acic17

UNIVERSITY OF

:5)) NOTRE DAME

mailto:nhazekam@nd.edu

