
Introduction to Makeflow
and Work Queue

The Cooperative Computing Lab

2

▰ We collaborate with people who have large scale computing
problems in science, engineering, and other fields.

▰ We operate computer systems on the O(10,000) cores:
clusters, clouds, grids.

▰ We conduct computer science research in the context of real
people and problems.

▰ We develop open source software for large scale distributed
computing.

ccl.cse.nd.edu

Our philosophy

3

▰ Harness all available resources: desktops, clusters, clouds, and grids.

▰ Make it easy to scale up from one desktop to national scale infrastructure.

▰ Provide familiar interfaces that make it easy to connect existing apps
together.

▰ Allow portability across operating systems, storage systems, middleware…

▰ Make simple things easy, and complex things possible.

▰ No special privileges required.

A quick tour of CCTools

4

▰ Open source, GNU General Public License.

▰ Compiles in 1-2 minutes, installs in $HOME.

▰ Runs on Linux, Solaris, MacOS, FreeBSD, …

▰ Interoperates with many distributed computing systems.
▻ Condor, SGE, Torque, Globus, iRODS, Hadoop…

▰ Components:
▻ Makeflow – A portable workflow manager.

▻ Work Queue – A lightweight distributed execution system.

▻ Parrot – A personal user-level virtual file system.

▻ Chirp – A user-level distributed filesystem.

Lots of documentation

5

Makeflow
A portable workflow system

6

Makeflow (make + workflow)

7

▰ Provides portability across batch systems.

▰ Enable parallelism (but not too much!)

▰ Trickle out work to batch system

▰ Fault tolerance at multiple scales.

▰ Data and resource management.

Makeflow

Local SLURM Work
Queue

Based off an old idea: Makefiles

part1 part2 part3: input.data split.py
 ./split.py input.data

out1: part1 mysim.exe
 ./mysim.exe part1 >out1

out2: part2 mysim.exe
 ./mysim.exe part2 >out2

out3: part3 mysim.exe
 ./mysim.exe part3 >out3

result: out1 out2 out3 join.py
 ./join.py out1 out2 out3 > result

8

Makeflow syntax

9

[output files] : [input files]

[command to run]

sim.exe
in.dat

calib.dat
out.txt

sim.exe in.dat –p 50 > out.txt

One Rule

out.txt : in.dat
sim.exe in.data –p 50 > out.txt

Not Quite Right!out.txt : in.dat calib.dat sim.exe
sim.exe in.data –p 50 > out.txt

Makeflow syntax

10

out.10 : in.dat calib.dat sim.exe
sim.exe –p 10 in.data > out.10

out.20 : in.dat calib.dat sim.exe
sim.exe –p 20 in.data > out.20

out.30 : in.dat calib.dat sim.exe
sim.exe –p 30 in.data > out.30

A Makefile is a really
compact specification.

11

How about we try JSON to more verbosely define our tasks!

Makeflow JSON syntax

12

▰ Verbose and flexible
▰ Familiar structure

▰ Consists of four items:
▻ "categories": Object<Category>

▻ "default_category": String

▻ "environment": Object<String>

▻ "rules": Array<Rule>

Makeflow JSON syntax

13

{
"outputs": ["out.txt"],
"inputs": ["in.dat", "calib.dat", "sim.exe"]
"command": "sim.exe –p 50 in.data > out.txt",

}

sim.exe
in.dat

calib.dat
out.txt

sim.exe in.dat –p 50 > out.txt

One Rule

Makeflow JSON syntax

14

{
"outputs": [{"out_10.txt"}],
"inputs": [{"in.dat"}, {"calib.dat"},

{"sim.exe"}]
"command": "sim.exe –p 10 in.data > out_10.txt",

},
{

"outputs": [{"path": "out_20.txt"}],
"inputs": [{"in.dat"}, {"calib.dat"},

{"sim.exe"}]
"command": "sim.exe –p 20 in.data > out_20.txt",

},...

Makeflow JSON rule

15

▰ "inputs": Array<File>
▰ "outputs": Array<File>
▰ "command": String
▰ "local_job": Boolean
▰ "category": String
▰ "resources": Resources
▰ "allocation": String
▰ "environment": Object<String>

JSON can be a bit too
verbose sometimes.

16

How about we shorten it with JX!

Makeflow JX syntax

17

▰ Allows for more compact makeflows.
▻ Provides functions for expanding tasks: range, variables, etc...

▰ Can be used as templates in conjunction with an arguments file.
▰ Useful for consistently structure data and different data.

Makeflow
Batch

System

args.jx

args.jx

args.jx

Makeflow JX syntax

18

{
"outputs": [{format("out_%d.txt", i)}],
"inputs": [{"in.dat"}, {"calib.dat"},

{"sim.exe"}]
"command": format("sim.exe –p %d in.data > out_%d.txt", i),

} for i in range(10, 30, 10),

{
"outputs": [{"out_10.txt"}],
"inputs": [{"in.dat"}, {"calib.dat"},

{"sim.exe"}]
"command": "sim.exe –p 10 in.data > out_10.txt",

},...

We can represent this JSON with JX:

Tutorial time!

19

ccl.cse.nd.edu/software/tutorials/makeflow/makeflow-tutorial.php

Work to the end of part 1

Makeflow + Work Queue

20

Harnessing concurrency with an execution engine

MAKEFLOW

XSEDE
Torque
Cluster

Campus
Condor

Pool

Public
Cloud

Provider

Private
Cluster

Makefile

Makeflow

Local Files and
Programs 21

???

???makeflow -T torque

makeflow -T condor

MAKEFLOW + WORK QUEUE

XSEDE
Torque
Cluster

Campus
Condor

Pool

Public
Cloud

Provider

Private
Cluster

Makefile

Makeflow

Local Files and
Programs

W

W
W

WW

WWW

W

W

22

W

W

W
submit

tasks Thousands of
Workers in a

Personal Cloud

WORK QUEUE

23

XSEDE
Torque
Cluster

Campus
Condor

Pool

Public
Cloud

Provider

Private
Cluster

Master

Tasks

W

W
W

WW

WWW

W

W

W

W

W
Thousands of
Workers in a

Personal Cloud

submit
tasks

Application

API

Advantages of Work Queue

24

▰ Harness multiple resources simultaneously.
▰ Hold on to cluster nodes to execute multiple tasks rapidly.

▻ (ms/task instead of min/task)
▰ Scale resources up and down as needed.
▰ Better management of data, with local caching for data

intensive tasks.
▰ Matching of tasks to nodes with data.

Keeping track of port
numbers is tedious.

25

Project names

26

Master
Port 4057 Worker

Catalog

Connect to
jetstream:4057

QueryAdvertise

makeflow …
-N myproject

work_queue_worker
-N myproject

work_queue_status
Query

“myproject”
is at jetstream:4057

Advantages of Work Queue

27

▰ MF +WQ is fault tolerant in many different ways:

▻ If Makeflow crashes (or is killed) at any point, it will recover by reading the
transaction log and continue where it left off.

▻ Makeflow keeps statistics on both network and task performance, so that
excessively bad workers are avoided.

▻ If a worker crashes, the master detects failure and restarts the task elsewhere.

▻ Workers can be added and removed at any time during workflow execution.

▻ Multiple masters with the same project name can be added and removed while
the workers remain.

▻ If the worker sits idle for too long (default 15m) it will exit, so as
not to hold resources idle.

Let’s try it out!

28

ccl.cse.nd.edu/software/tutorials/makeflow/makeflow-tutorial.php

Continue where you left off, and work to the end of the tutorial

Container Integration

29

Providing consistent environments

If you are not interested in utilizing containers for your workflows,
the following slides will be supplementary material you may skip.

Containers create precise execution environments

30

singularity run ubuntu-38.23.img mysim.exe

Code

Libraries

Kernel

Code

Libraries

Kernel

Ubuntu-38.23
image

Container
Environment

mysim.exe

Running a container for Makeflow tasks

31

Tasks

makeflow --singularity ubuntu.img

Makeflow

singularity run ubuntu.img ...

Worker

T T T

Last hands-on section!

32

ccl.cse.nd.edu/software/tutorials/makeflow/container-tutorial.php

Work through the container tutorial from start to finish.

33

Questions?
Please contact us!

Nate Kremer-Herman
nkremerh@nd.edu

ccl.cse.nd.edu

mailto:nkremerh@nd.edu

