
Introduction to Makeflow 
and Work Queue



The Cooperative Computing Lab
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▰ We collaborate with people who have large scale computing 
problems in science, engineering, and other fields.

▰ We operate computer systems on the O(10,000) cores: 
clusters, clouds, grids.

▰ We conduct computer science research in the context of real 
people and problems.

▰ We develop open source software for large scale distributed 
computing.

ccl.cse.nd.edu



Our philosophy
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▰ Harness all available resources: desktops, clusters, clouds, and grids.

▰ Make it easy to scale up from one desktop to national scale infrastructure.

▰ Provide familiar interfaces that make it easy to connect existing apps 
together.

▰ Allow portability across operating systems, storage systems, middleware…

▰ Make simple things easy, and complex things possible.

▰ No special privileges required.



A quick tour of CCTools
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▰ Open source, GNU General Public License.

▰ Compiles in 1-2 minutes, installs in $HOME.

▰ Runs on Linux, Solaris, MacOS, FreeBSD, …

▰ Interoperates with many distributed computing systems.
▻ Condor, SGE, Torque, Globus, iRODS, Hadoop…

▰ Components:
▻ Makeflow – A portable workflow manager.

▻ Work Queue – A lightweight distributed execution system.

▻ Parrot – A personal user-level virtual file system.

▻ Chirp – A user-level distributed filesystem.



Lots of documentation
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Makeflow
A portable workflow system
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Makeflow (make + workflow)
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▰ Provides portability across batch systems.

▰ Enable parallelism (but not too much!)

▰ Trickle out work to batch system

▰ Fault tolerance at multiple scales.

▰ Data and resource management.

Makeflow

Local SLURM Work 
Queue



Based off an old idea: Makefiles

part1 part2 part3: input.data split.py
     ./split.py input.data

out1: part1 mysim.exe
    ./mysim.exe part1 >out1

out2: part2 mysim.exe
    ./mysim.exe part2 >out2

out3: part3 mysim.exe
    ./mysim.exe part3 >out3

result: out1 out2 out3 join.py
    ./join.py out1 out2 out3 > result 
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Makeflow syntax
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[output files] : [input files]

[command to run]

sim.exe
in.dat

calib.dat
out.txt

sim.exe in.dat –p 50 > out.txt

One Rule

out.txt : in.dat
sim.exe in.data –p 50 > out.txt

Not Quite Right!out.txt : in.dat calib.dat sim.exe
sim.exe in.data –p 50 > out.txt



Makeflow syntax
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out.10 : in.dat calib.dat sim.exe
sim.exe –p 10 in.data > out.10

out.20 : in.dat calib.dat sim.exe
sim.exe –p 20 in.data > out.20

out.30 : in.dat calib.dat sim.exe
sim.exe –p 30 in.data > out.30



A Makefile is a really 
compact specification.
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How about we try JSON to more verbosely define our tasks!



Makeflow JSON syntax
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▰ Verbose and flexible
▰ Familiar structure

▰ Consists of four items:
▻ "categories": Object<Category>

▻ "default_category": String

▻ "environment": Object<String>

▻ "rules": Array<Rule>



Makeflow JSON syntax
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{
"outputs": ["out.txt"],
"inputs": [ "in.dat", "calib.dat", "sim.exe"]
"command": "sim.exe –p 50 in.data > out.txt",  

}

sim.exe
in.dat

calib.dat
out.txt

sim.exe in.dat –p 50 > out.txt

One Rule



Makeflow JSON syntax
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{
"outputs": [{"out_10.txt"}],
"inputs": [ {"in.dat"},  {"calib.dat"},  

{"sim.exe"}]
"command": "sim.exe –p 10 in.data > out_10.txt",  

},
{

"outputs": [{"path": "out_20.txt"}],
"inputs": [ {"in.dat"},  {"calib.dat"},  

{"sim.exe"}]
"command": "sim.exe –p 20 in.data > out_20.txt",  

},...



Makeflow JSON rule
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▰ "inputs": Array<File>
▰ "outputs": Array<File>
▰ "command": String
▰ "local_job": Boolean
▰ "category": String
▰ "resources": Resources
▰ "allocation": String
▰ "environment": Object<String>



JSON can be a bit too 
verbose sometimes.
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How about we shorten it with JX!



Makeflow JX syntax
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▰ Allows for more compact makeflows.
▻ Provides functions for expanding tasks: range, variables, etc...

▰ Can be used as templates in conjunction with an arguments file.
▰ Useful for consistently structure data and different data.

Makeflow
Batch

System

args.jx

args.jx

args.jx



Makeflow JX syntax
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{
"outputs": [{format("out_%d.txt", i)}],
"inputs": [ {"in.dat"},  {"calib.dat"},  

{"sim.exe"}]
"command": format("sim.exe –p %d in.data > out_%d.txt", i),  

} for i in range(10, 30, 10),

{
"outputs": [{"out_10.txt"}],
"inputs": [ {"in.dat"},  {"calib.dat"},  

{"sim.exe"}]
"command": "sim.exe –p 10 in.data > out_10.txt",  

},...

We can represent this JSON with JX:



Tutorial time!
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ccl.cse.nd.edu/software/tutorials/makeflow/makeflow-tutorial.php

Work to the end of part 1



Makeflow + Work Queue
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Harnessing concurrency with an execution engine
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Local Files and 
Programs 21

???

???makeflow -T torque

makeflow -T condor



MAKEFLOW + WORK QUEUE

XSEDE
Torque
Cluster

Campus
Condor

Pool

Public
Cloud

Provider

Private
Cluster

Makefile

Makeflow

Local Files and 
Programs

W

W
W

WW

WWW

W

W

22

W

W

W
submit

tasks Thousands of 
Workers in a

Personal Cloud



WORK QUEUE
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Advantages of Work Queue
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▰ Harness multiple resources simultaneously.
▰ Hold on to cluster nodes to execute multiple tasks rapidly.  

▻ (ms/task instead of min/task)
▰ Scale resources up and down as needed.
▰ Better management of data, with local caching for data 

intensive tasks.
▰ Matching of tasks to nodes with data.



Keeping track of port 
numbers is tedious.
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Project names
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Master
Port 4057 Worker

Catalog

Connect to
jetstream:4057

QueryAdvertise

makeflow …
-N myproject

work_queue_worker
-N myproject

work_queue_status
Query

“myproject”
is at jetstream:4057



Advantages of Work Queue
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▰ MF +WQ is fault tolerant in many different ways:

▻ If Makeflow crashes (or is killed) at any point, it will recover by reading the 
transaction log and continue where it left off.

▻ Makeflow keeps statistics on both network and task performance, so that 
excessively bad workers are avoided.

▻ If a worker crashes, the master detects failure and restarts the task elsewhere.

▻ Workers can be added and removed at any time during workflow execution.

▻ Multiple masters with the same project name can be added and removed while 
the workers remain.

▻ If the worker sits idle for too long (default 15m) it will exit, so as                     
not to hold resources idle.



Let’s try it out!
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ccl.cse.nd.edu/software/tutorials/makeflow/makeflow-tutorial.php

Continue where you left off, and work to the end of the tutorial



Container Integration
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Providing consistent environments

If you are not interested in utilizing containers for your workflows, 
the following slides will be supplementary material you may skip.



Containers create precise execution environments
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singularity run ubuntu-38.23.img mysim.exe

Code

Libraries

Kernel

Code

Libraries

Kernel

Ubuntu-38.23
image

Container
Environment

mysim.exe



Running a container for Makeflow tasks
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Tasks

makeflow --singularity ubuntu.img

Makeflow

singularity run ubuntu.img ...

Worker

T T T



Last hands-on section!
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ccl.cse.nd.edu/software/tutorials/makeflow/container-tutorial.php

Work through the container tutorial from start to finish.
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Questions?
Please contact us!

Nate Kremer-Herman
nkremerh@nd.edu

ccl.cse.nd.edu

mailto:nkremerh@nd.edu

