
master-worker applications
with

makeflow and work queue

slides at:
https://ntrda.me/2GAiswY

Tim Shaffer, Nate Kremer-Herman, Nick Hazekamp,
and Ben Tovar

https://ntrda.me/2GAiswY

where we are

Scientist says:
"This demo task runs on my laptop, but I need much more for the real
application. It would be great if we can run O(25K) tasks like this on this
cloud/grid/cluster I have heard so much about."

who we are

The Cooperative Computing Lab
Computer Science and Engineering

University of Notre Dame

CCL Objectives

• Harness all the resources that are available: desktops,
clusters, clouds, and grids.

• Make it easy to scale up from one desktop to national
scale infrastructure.

• Provide familiar interfaces that make it easy to connect
existing apps together.

• Allow portability across operating systems, storage
systems, middleware…

• Make simple things easy, and complex things possible.
• No special privileges required.

4

Cooperative Computing Lab

CCTools

• Open source, GNU General Public License.

• Compiles in 1-2 minutes, installs in $HOME.

• Runs on Linux, Solaris, MacOS, Cygwin, FreeBSD, …

• Interoperates with many distributed computing systems.

– Condor, SGE, Torque, Globus, iRODS, Hadoop…

6

most used components

Makeflow: A portable workflow manager
What to run?

Work Queue: A lightweight distributed execution system
What to run and where to run it?

Chirp: A user-level distributed filesystem
Where to get/put the data?

Parrot: A personal user-level virtual file system
How to read/write the data?

7

agenda

Setting-up CCTools
5min

Executing workflows with Makeflow (Nate)
20 min

Makeflow as a master-worker application (Nick)
25 min

Break

Writing master-worker applications with work queue (Ben)
with emphasis in resource management
50 min

8

setting up cctools

getting the examples (to try at home)

10

$ ssh submit-1.chtc.wisc.edu
$ cd ~
$ git clone \
https://github.com/cooperative-computing-lab/cctools-tutorial

setting up cctools at U of Wisconsin M.

11

$ cd ~/cctools-tutorial
$ source etc/uofwm-env

OR manually set the following:
cctools_home=/usr/local/cctools
PATH=${cctools_home}/bin:${PATH}
PYTHONPATH=${cctools_home}/lib/python2.7/site-packages:${PYTHONPA
TH}
TCP_LOW_PORT=10000
TCP_HIGHT_PORT=10999
export PATH PYTHONPATH TCP_LOW_PORT TCP_HIGH_PORT

See extra slides at end of presentation for manual
install/setup in your personal machines

test your setup (to try at home)

12

if the following command fails, did you set PATH?
$ work_queue_worker --version
work_queue_worker version 7.0.9 FINAL from source (released 2018-11-14 08:13:17 -0500)
 Built by btovar@camd03.crc.nd.edu on 2018-11-14 08:13:17 -0500
 System: Linux camd03.crc.nd.edu 3.10.0-862.el7.x86_64 #1 SMP Wed Mar 21 18:14:51 EDT 2018
x86_64 x86_64 x8
6_64 GNU/Linux
 Configuration: --strict --build-label from source --build-date …etc

makeflow

makeflow

A portable workflow manager.

makeflow

A portable workflow manager.

set of interdependent
computational tasks

makeflow

A portable workflow manager.

set of interdependent
computational tasks

figure out which outputs are
inputs to some other task.

run tasks in order, as parallel as
possible.

makeflow

A portable workflow manager.

set of interdependent
computational tasks

figure out which outputs are
inputs to some other task.

run tasks in order, as parallel as
possible.

runs tasks on:

condor
slurm
sge
workqueue
ec2
mesos
...

17

makeflow examples repository

https://github.com/cooperative-computing-lab/makeflow-examples 18

https://github.com/cooperative-computing-lab/makeflow-examples

dependencies in Makeflow

- Task X depends on Task Y if Task X produces a file Task Y needs.

- Directed acyclic graph (DAG) where nodes are tasks, and edges
represent an input-output file dependency.

filecommand 19

Task Execution Model

put input
files into
sandbox

get output
files from
sandbox

command

sandbox

20

Makeflow Architecture

Makeflow

co
nd

or

sg
e

w
or

k
qu

eu
e

sl
ur

m

m
es

os

ec
2 ...

sandboxes

drivers

wrappers
that modify

how the
sandboxes
are created

stats and
state kept by
transactions

logs

input is an abstract
directed acyclic graph

describing a task in makeflow

Consider a command 'sim.exe', that takes input file A, and

produces outfile X.

what is the set of input files? what is the set of output files?

22

$ ls
sim.exe some-input-file

$./sim.exe some-input-file some-output-file
$ ls
sim.exe some-input-file some-output-file

describing a task in makeflow

some-output-file: some-input-file sim.exe
 ./sim.exe some-input-file some-output-file

list of
outputs list of

inputs

colon :

tab
command from

the sandbox
perspective

23

makeflow example

24

comments start with a '#'
C: B sim.exe

./sim.exe B C

B: A sim.exe
./sim.exe A B

what is this workflow doing?

are the rules in the wrong order?

makeflow mini example (try at home)

25

$ cd ~/cctools-tutorial/makeflow/example_01
$ ls
A example_01.mf sim.exe

$ makeflow example_01.mf
…

$ ls
A B C example_01.mf example_01.mf.makeflowlog sim.exe

rerunning a workflow (try at home)

26

$ makeflow example_01
…
recovering from log file example_01.mf.makeflowlog...
starting workflow....
nothing left to do.

$ makeflow -c example_01
$ ls
A example_01.mf sim.exe

transactions and
recovery log

my-simulations

declaring resources needed

Task 1:

4 cores
1024 MB of memory
1000 MB of disk

Task 2:

4 cores
1024 MB of memory
1000 MB of disk

my-postprocess

Task 3:

1 cores
2048 MB of memory
2000 MB of disk

declaring resources for tasks

Tasks are grouped into categories.

All tasks in a category have identical requirements for cores,
memory and disk.

Unless specified otherwise, all tasks belong to the "default"
category.

29

memory and disk in MBs
.MAKEFLOW CATEGORY my-simulations
.MAKEFLOW CORES 4
.MAKEFLOW MEMORY 1024
.MAKEFLOW DISK 1000

.MAKEFLOW CATEGORY my-postprocess

.MAKEFLOW CORES 1

.MAKEFLOW MEMORY 512

.MAKEFLOW DISK 2000

.MAKEFLOW CATEGORY my-simulations
Y: X sim.exe

./sim.exe X Y
B: A sim.exe

./sim.exe A B

.MAKEFLOW CATEGORY my-postprocess
results: B Y postprocess

./postprocess B Y > results

running tasks on remote resources (try at home)

30

$ cd ~/cctools-tutorial/makeflow/example_02

Run on condor with -Tcondor
size of slots requested as appropriate
$ makeflow example_02.mf -Tcondor
…
Confirm with the condor log the resource allocations:
$ grep -B1 -A2 Cpus example_02.mf.condorlog
…

Partitionable Resources : Usage Request Allocated
 Cpus : 1 1
 Disk (KB) : 21 2048000 3530078
 Memory (MB) : 0 512 512
…

when things go wrong (try at home)

31

$ cd ~/cctools-tutorial/makeflow/example_03

broken_sim.exe does not work
$./broken_sim.exe A B
trying step 1 of ./broken_sim.exe A B
trying step 2 of ./broken_sim.exe A B
trying step 3 of ./broken_sim.exe A B
an error! oh no!

when things go wrong (try at home)

32

$ cat example_03.mf
B log-of-A-to-B: A broken_sim.exe

./broken_sim.exe A B > log-of-A-to-B

-r N to retry a failed rule N times (default 10)
-dall To print debug info to stdout
$ makeflow -r2 -dall example_03.mf
…

partial outputs available per task
$ cat makeflow.failed.0/log-of-A-to-B

common pattern: execute large tasks locally

33

split1 split2 … splitn: my-large-file
LOCAL ./split-my-files my-large-file

output1: split1
./process split1 > output1

…

my-large-output: output1 output2 … outputn
LOCAL ./merge output1 output2 … > my-large-output

makeflow containers tutorial

http://ccl.cse.nd.edu/software/tutorials/makeflow/container-tutorial.ph
p

34

http://ccl.cse.nd.edu/software/tutorials/makeflow/container-tutorial.php
http://ccl.cse.nd.edu/software/tutorials/makeflow/container-tutorial.php

JX - JSON-like alternative makeflow language

Workflows can also be described in pure JSON or in an extended language known as
JX which can be evaluated to produce pure JSON.

JX is more flexible than the Unix Make syntax (E.g., it has functions, and operators.)
http://ccl.cse.nd.edu/software/manuals/jx-tutorial.html

35

http://ccl.cse.nd.edu/software/manuals/jx-tutorial.html

makeflow as a
master-worker application

master-worker application

In a master worker application...

37

master process

master-worker application

the master process generates tasks...

38

master process

tasktask
tasktask

master-worker application

… delivers them to worker processes to execute...

39

master process

task

worker process
task

task

worker process

task

task

master-worker application

… waits for workers to execute tasks ...

40

master process

task

worker process
tasktask

worker process
task

master-worker application

and gathers the results on completion.

41

master process

task

worker process
result task

worker processresult

master-worker application

and on and on until no more tasks are generated.

42

master process

worker process

result

task

worker process

result

task

pure condor vs wq master-worker

one condor job per task vs. one condor job per worker
When is it most beneficial?

● Lots of small tasks:
○ Wait time in the condor queue proportional to the number of

workers, not the number of tasks.

● Workers can cache common input files, reducing transfer times.

● Workers may run in any pool, or resource you have access (including
non-condor resources).

master-worker application

44

master process

worker process in
campus condor cluster

worker process
in EC2

$$$

pure condor vs wq master-worker

one condor job per task vs. one condor job per worker
When it is not beneficial?

● Tasks are not easily described in terms of input-outputs.
○ (e.g. streaming)

● You need to use an advanced feature of condor.

● You like to write highly customized condor submit files.

● The worker process interferes with your task. (Wrappers all the way down.)

makeflow as a work queue master (try at home)

$ cd ~/cctools-tutorial/makeflow/example_04

-Twq to use work queue
-M to give a name to our master. Workers will use this
name to find the master

$ makeflow -Twq -M ${USER}-my-makeflow example_04.mf

see tasks waitings, workers connected, etc...
$ work_queue_status
…

work_queue_status

${USER}-my-makeflow

feed a worker to the master (try at home)

in another terminal…

-M ${USER}-my-makeflow to serve masters with that name
it could be a regexp.

--single-shot to terminate after serving one master
In general workers may serve many masters in their
lifetime, but only one at a time.

$ work_queue_worker --single-shot -M ${USER}-my-makeflow

how did the worker find the master?

49

master process
worker process

catalog server
ccl.cse.nd.edu

my name is…
I am at ...

where is a master
with name …?

if the defaults don't work for you

50

Before launching the makeflow, specify the range of ports available

default range is 9000-9999

source .../etc/uofwm-env sets the following range:

export TCP_LOW_PORT=10000
export TCP_HIGH_PORT=10999

Instead of -M:

use --port at the master to specify a port to listen
specify address of master and port at the worker

If you must, you can also run your own cctools/bin/catalog_server (-C option)

create a worker in condor

using \ to break the command in multiple lines
you can omit the \ and put everything in one line

run 3 workers in condor, each of size 1 cores, 2048 MB
of memory and 4096 MB of disk,
to serve ${USER}-my-makeflow
and which timeout after 60s of being idle.

$ condor_submit_worker --cores 1 \
--memory 2048 \
--disk 4096 \

 -M ${USER}-my-makeflow \
--timeout 60 \
3

resources contract:
running several tasks in a worker concurrently

Worker has
available:

i cores
j MB of memory
k MB of disk

Task needs:

m cores
n MB of memory
o MB of disk

Task runs only if it fits in the currently
available worker resources.

resources contract example

Worker has
available:

8 cores
512 MB of memory
512 MB of disk

Task a:

4 cores
100 MB of memory
100 MB of disk

Tasks a and b may run in worker at the same time.
(Work could still run another 1 core task.)

Task b:

3 cores
100 MB of memory
100 MB of disk

Beware!
tasks use all worker on missing declarations

Worker has
available:

8 cores
512 MB of memory
500 TB of disk

Task a:

4 cores
100 MB of memory

Tasks a and b may NOT run in worker at the same time.
(disk resource is not specified.)

Task b:

3 cores
100 MB of memory

the work queue factory

$ work_queue_factory -Tcondor \
 -M some-master-name
 --min-workers 5
 --max-workers 200
 --cores 1 --memory 4096 --disk 10000
 --tasks-per-worker 4

Factory creates workers as needed by the master:

the work queue factory -- conf file

$ work_queue_factory -Tcondor -C my-conf.json
$ cat my-conf.json
{

"master-name": "some-master-name",
"max-workers": 200,
"min-workers": 5,
"workers-per-cycle": 5,
"cores": 1,
"disk": 10000,
"memory": 4096,
"timeout": 900,
"tasks-per-worker": 4

}

to make adjustments the configuration file can be modified
once the factory is running

all workers can talk to all masters, unless...

put a passphrase in a text file, say my.password.txt

tell master to use the password:
$ makeflow … --password my.password.txt

tell workers to use the password:
$ work_queue_workers … --password my.password.txt

NOTE THAT THE PASSWORD IS SIMPLY TO VERIFY A HANDSHAKE
IT MAY NOT PROTECT AGAINST MALICIOUS ATTACKS

break

writing master-worker
applications with

work queue

makeflow vs. work queue when describing
workflows

makeflow:
directed-acyclic graph dynamic model
workflow structure is fixed and static
computes dependencies between tasks
classic unix make language or JSON

work queue:
submit-wait programming model
workflow structure can be decided at run time
when a task is declared, it is assumed to be ready to run
bindings in C, python2, python3, and perl

60

skeleton of a work queue application

1. create and configure a queue

2. create and configure tasks

3. submit tasks to the queue

4. wait for tasks to complete
a. if no new tasks to submit, terminate

b. otherwise go to 2
61

minimal work queue application

62

import work_queue as WQ

1. master named: 'my-master-name', run at some port at random
q = WQ.WorkQueue(name='my-master-name', port=0)

2. create a tasks that runs a command remotely, and ...
t = WQ.Task('./sim.exe A B')

...specify the name of input and output files
t.specify_input_file('sim.exe', cache=True)
t.specify_input_file('A')
t.specify_output_file('B')

3. submit the task to the queue
q.submit(t)

4. wait for all tasks to finish, 5 second timeout:
while not q.empty():
 t = q.wait(5)
 if t.result == WQ.WORK_QUEUE_RESULT_SUCCESS:
 print 'task {} finished'.format(t.id)

running work queue (try at home)

63

tell python where to find work queue
$ source ~/cctools-tutorial/etc/uofwm-env

$ cd ~/cctools-tutorial/work_queue/example_01

modify wq_mini.py with a master name you like,
(currently set to ${USER}-my-first-master), then
$ python example_01.py

in some other terminal, launch a worker for that master
workers don't need PYTHONPATH set.
$ work_queue_worker -M your-master-name --single-shot

parameter sweep example

64

from work_queue import WorkQueue, Task

1. create the queue
q = WorkQueue(name='my-parameter-sweep', port=0)

for i in range(1..1000):
2. create a task
t = Task('./cmd -output out.{1} -parameter {1}'.format(i))
t.specify_input_file('cmd', cache=True)
t.specify_output_file('out.{}'.format(i))
3. submit the task to the queue
q.submit(t)

4. wait for all tasks to finish, 5 second timeout:
while not q.empty():
 t = q.wait(5)
 if t:
 ...

tasks to the races -- duplicating tasks

65

submit the same task multiple times
keep the result of the one that terminates the fastest.

t = Task(...)
t.specify_tag('some_identifying_tag')

for n in range(0..5):
 t_copy = t.clone()
 q.submit(t_copy)

while not q.empty():
 t_fastest = q.wait(5)
 if t_fastest:
 q.cancel_by_tasktag('some_identifying_tag')
 break

specifying tasks resources

66

q.specify_category_max_resources('my_category',
{

'cores' : 1,
'memory': 1024,
'disk' : 1014

})

t = Task('...')
t.specify_category('my_category')

managing resources

Do nothing (default if tasks don't declare cores, memory or disk):
One task per worker, task occupies the whole worker.

Honor contract (default if tasks declare resources):
Task declares cores, memory, and disk (the three of them!)
Worker runs as many concurrent tasks as they fit.
Tasks may use more resources than declared.

Monitoring and Enforcement:
Tasks fail (permanently) if they go above the resources declared.

Automatic resource labeling:
Tasks are retried with resources that maximize throughput, or minimize waste.

67

Monitoring and enforcement

Tasks fail (permanently) if they go above the resources declared.

q.enable_monitoring()

t = q.wait(...)

resources assigned to the task
.cores, .memory, .disk
t.resources_allocated.cores

resource really used
t.resources_measured.memory

which limit was broken?
if t.result == WORK_QUEUE_RESULT_RESOURCE_EXHAUSTION:
 if t.limits_exceeded.disk > -1:

... 68

Monitoring and enforcement

Workers and tasks are matched using only cores, memory, and disk.

However, limits can be set and monitored in many other resources:

q.specify_category_max_resources('my_category',
{

'cores': n, 'memory': MB, 'disk': MB,
'wall_time': us, 'cpu_time': us, 'end': us,
'swap_memory': MB,
'bytes_read': B, 'bytes_written': B,
'bytes_received': B, 'bytes_sent': B,
'bandwidth': B/s
'work_dir_num_files': n

… }

})

69

automatic resource labeling
when you don't know how big your tasks are

Tasks which size
(e.g., cores, memory, and disk)

is not known until runtime.

workers

One task per worker:
Wasted resources, reduced throughput.

Many tasks per worker:
Resource contention/exhaustion, reduce
throughput 70

Task-in-the-Box

workers

71

Task-in-the-Box

Workers

Allocations
inside a worker

72

Task-in-the-Box

workers

One task per
allocation

One task per
allocation

73

Task-in-the-Box

workers

Task exhausted
its allocation

One task per
allocation

74

Task-in-the-Box

workers

Retry allocating a
whole worker

One task per
allocation

75

ND CMS example

Real result from a production High-Energy Physics CMS analysis
(Lobster NDCMS)

Histogram Peak Memory vs Number of Tasks
O(700K) tasks that ran in O(26K) cores managed by WorkQueue/Condor.

First-allocation that maximizes expected
throughput

(increase of %40 w.r.t. no task is retried)
Tovar, et.al
DOI:10.1109/TPDS.2017.2762310

http://dx.doi.org/10.1109/TPDS.2017.2762310

automatic resource labeling

compute retries for maximum throughput
q.specify_category_mode('my_category',

work_queue.WORK_QUEUE_ALLOCATION_MODE_MAX_THROUGHPUT)

compute retries for minimum waste
q.specify_category_mode('my_category',

work_queue.WORK_QUEUE_ALLOCATION_MODE_MIN_WASTE)

task fails at first resource exhaustion (default)
q.specify_category_mode('my_category',

work_queue.WORK_QUEUE_ALLOCATION_MODE_FIXED)

task is tried at bigger workers when available
q.specify_category_mode('my_category',

work_queue.WORK_QUEUE_ALLOCATION_MODE_MAX)

when do task retries stop?

an explicit hard limit is reached...
q.specify_category_max_resources('my_category', …)

or maximum number of retries is reached:
(default 1)
t.specify_max_retries(n)

note that you can define categories for which
no hard limit is reached, then only max retries
is relevant.

what work queue does behind the scenes

1. Some tasks are run using full workers.
2. Statistics are collected.
3. Allocations computed to maximize throughput, or minimize waste.

a. Run task using guessed size.
b. If task exhausts guessed size, keep retrying on full (bigger) workers,

or a specified specify_category_max_resources is reached.
4. When statistics become out-of-date, go to 1.

resources example

80

q.enable_monitoring()

create a category for all tasks
q.specify_category_max_resources('my-tasks', {'cores': 1, 'disk': 500})
q.specify_category_mode('my-tasks',
WQ.WORK_QUEUE_ALLOCATION_MODE_MAX_THROUGHPUT)

create 30 tasks. A task creates a 200MB file, using 10MB of memory buffer.
for i in range(0,30):
 t = WQ.Task('python task.py 200')
 t.specify_input_file('task.py', cache = True)
 t.specify_category('my-tasks')
 t.specify_max_retries(2)
 q.submit(t)

create a task that will break the limits set
t = WQ.Task('python task.py 1000')
t.specify_input_file('task.py', cache = True)
t.specify_category('my-tasks')
t.specify_max_retries(2)
q.submit(t)

while not q.empty():
 t = q.wait(60)
 ...

resources example (try at home)

81

$ source ~/cctools-tutorial/etc/uofwm-env
$ cd ~/cctools-tutorial/example_02
$ python example_02.py
…
WorkQueue on port: NNNN

in another terminal, create a worker:
(-dall -o:stdout to send debug output to stdout)
$ work_queue_worker -M ${USER}-master --disk 2000 -dall -o:stdout |
grep 'Limit'
… cctools-monitor[8837] error: Limit disk broken.

^C to kill the worker
check resources statistics
$ work_queue_status -A localhost NNNN
CATEGORY RUNNING WAITING FIT-WORKERS MAX-CORES MAX-MEMORY MAX-DISK
my-tasks 0 50 0 1 ~10 >500

work_queue_status -A HOST PORT
information about waiting tasks and resources

CATEGORY RUNNING WAITING FIT-WORKERS MAX-CORES MAX-MEM MAX-DISK
my-cat-a 2 20 2 1 ~1024 ~2000
my-cat-b 0 15 0 1 >3000 ~1000
my-cat-c 0 0 0 ??? ??? ???

> At least one task that is
now waiting, failed exhausting
these much of the resource.

No info on
tasks waiting.

no fixed resource
set, and all tasks
have run under this
value

fixed resource

resources in Makeflow without WQ

$ makeflow -Tcondor --monitor=my_dir Makeflow

one resource summary per rule:
$ cat mydir/resource-rule-2.summary

Automatic Resource Labeling
Makeflow file

.MAKEFLOW CATEGORY MY_FIRST_CATEGORY

.MAKEFLOW MODE MAX_THROUGHPUT

.MAKEFLOW CATEGORY MY_SECOND_CATEGORY

.MAKEFLOW MODE MIN_WASTE

.MAKEFLOW CATEGORY MY_OTHER_CATEGORY

.MAKEFLOW MODE FIXED

.MAKEFLOW CATEGORY MY_FIRST_CATEGORY
output_a: input_a

cmd < input_a > output_a

.MAKEFLOW CATEGORY MY_SECOND_CATEGORY
output_b: input_b

cmd < input_b > output_b

.MAKEFLOW CATEGORY MY_OTHER_CATEGORY
output_c: input_c

cmd < input_c > output_c

% makeflow --monitor=my_dir --retry-count=5

configuring runtime logs

We recommend to always to enable all logs.

85

import work_queue as WQ

record of the states of tasks and workers
specially useful when tracking tasks resource
usage and retries
q.specify_transactions_log('my_transactions.log')

workers joined, tasks completed, etc. per time step
q.specify_log('my_stats.log')

transactions log

86

$ grep '\<TASK 1\>' example_02.tr

statistics log

Use work_queue_graph_log to visualize the statistics log:

87

$ work_queue_graph_log my_stats.log
$ display my_stats.*.svn

other ways to access statistics

88

$ work_queue_status -l HOST PORT
{"name":"cclws16.cse.nd.edu","address":"129.74.153.171","tasks_total_di
sk":0,...

current stats counts (e.g., q.stats.workers_idle)
s = q.stats
s = q.stats_by_category('my-category'))

available stats
http://ccl.cse.nd.edu/software/manuals/api/html/structwork__queue__stats.html

http://ccl.cse.nd.edu/software/manuals/api/html/structwork__queue__stats.html

miscellaneous work queue calls

89

kill workers slower than alpha times the average
q.activate_fast_abort(alpha)

blacklist a worker
q.blacklist(hostname)

remove cached file from workers
q.invalidate_cache_file(filename)

specify password file
q.specify_password_file(filename)

remote name of files
q.specify_{in|out}put_file(name-at-master, name-at-worker,...)

produce monitoring snapshots at certain events
(e.g., a regexp in a log appears, or a file is created/deleted)
t.specify_snapshot_file('snapshot-spec.json')

resources per task
t.specify_cores(n)
t.specify_memory(n)
t.specify_disk(n)

Work Queue API

http://ccl.cse.nd.edu/software/manuals/api/html/namespaces.html

90

http://ccl.cse.nd.edu/software/manuals/api/html/namespaces.html

Stand-alone resource monitoring

resource_monitor -L"cores: 4" -L"memory: 4096" -- cmd

(does not work as well on static executables that fork)

http://ccl.cse.nd.edu/software/manuals/resource_monitor.html

http://ccl.cse.nd.edu/software/manuals/resource_monitor.html

thanks!

questions:
btovar@nd.edu

forum:
https://ccl.cse.nd.edu/community/forum

manuals:
http://ccl.cse.nd.edu/software

repositories:
https://github.com/cooperative-computing-lab/cctools
https://github.com/cooperative-computing-lab/makeflow-examples

mailto:btovar@nd.edu
https://ccl.cse.nd.edu/community/forum
http://ccl.cse.nd.edu/software
https://github.com/cooperative-computing-lab/cctools
https://github.com/cooperative-computing-lab/makeflow-examples

extra slides

configuring tasks

94

from work_queue import Task

t = Task('shell command to be executed')

t.specify_input_file('path/to/some/file')

files can be cached at workers
t.specify_input_file('path/to/other/file', cache=True)

same for output files
t.specify_output_file('path/to/output/file')
t.specify_output_file('path/to/other/output', cache=True)

if directory name, send/receive recursively
t.specify_directory('some/dir',

recursive=True,
type=work_queue.WORK_QUEUE_INPUT)
or type=work_queue.WORK_QUEUE_OUTPUT)

download binary package (try at home)

95

For most of you at University of Wisconsin-Madison:

http://ccl.cse.nd.edu/software/download

and download the most recent stable version for redhat 7 into ~/cctools-tutorial

or for today, shortcut in a terminal:

$ cd ~/cctools-tutorial
$ bin/download-cctools

http://ccl.cse.nd.edu/software/download

install cctools (try at home)

96

$ cd ~/cctools-tutorial

decompress cctools
$ tar -xf cctools-*-redhat7.tar.gz

move to canonical destination
$ mv cctools-*-redhat7 cctools

setup environment (you may want to add these
lines to the end of .bashrc)
$ PATH=:~/cctools-tutorial/cctools/bin:${PATH}
$ export PATH

(or for today, set your environment with:)
$ source ~/cctools-tutorial/etc/cctools-env

from source (maybe try at home)

97

$ cd ~/cctools-tutorial

decompress cctools
$ tar -xf cctools-*-src.tar.gz

configure and install
$ cd cctools-*-src
$./configure --prefix ~/cctools-tutorial/cctools
$ make
$ make install

