slides at:
https://ntrda.me/2GAiswY

master-worker applications
with
makeflow and work queue

Tim Shaffer, Nate Kremer-Herman, Nick Hazekamp,
and Ben Tovar

% e UNIVERSITY OF —@—0—

"5) NOTRE DAME CCTools

https://ntrda.me/2GAiswY

where we are

Scientist says:

"This demo task runs on my laptop, but | need much more for the real
application. It would be great if we can run O(25K) tasks like this on this
cloud/grid/cluster | have heard so much about."

- N -

X -

[=)

who we are

T X X
- 9 =

- -
o1 -
bl R

The Cooperative Computing Lab
Computer Science and Engineering
University of Notre Dame

CCL Objectives

- Harness all the resources that are available: desktops,
clusters, clouds, and grids.

- Make it easy to scale up from one desktop to national
scale infrastructure.

* Provide familiar interfaces that make it easy to connect
existing apps together.

- Allow portability across operating systems, storage
systems, middleware...

- Make simple things easy, and complex things possible.
- No special privileges required.

Cooperative Computing Lab

Douglas Thain Benjamin Tovar Nicholas p Nate Krcmér—Herman Tim Shaffer
Director Research
Soft. Engineer

Andrew Litteken Doug Smith Herman Tong Daniel Galvao Guerra

o—0—

CCTools CCTOO S

B e

» Open source, GNU General Public License.

- Compiles in 1-2 minutes, installs in SHOME.

« Runs on Linux, Solaris, MacOS, Cygwin, FreeBSD, ...

* Interoperates with many distributed computing systems.

— Condor, SGE, Torque, Globus, iRODS, Hadoop...

o—0—

most used components CCTools

B e

Makeflow: A portable workflow manager
What to run?

Work Queue: A lightweight distributed execution system
What to run and where to run it?

Chirp: A user-level distributed filesystem
Where to get/put the data?

Parrot: A personal user-level virtual file system
How to read/write the data?

agenda

Setting-up CCTools
amin

Executing workflows with Makeflow (Nate)
20 min

Makeflow as a master-worker application (Nick)
25 min

Break
Writing master-worker applications with work queue (Ben)

with emphasis in resource management
50 min

setting up cctools

S ssh submit-1.chtc.wisc.edu
S cd ~

§ git clone \
https://github.com/cooperative-computing-lab/cctools-tutorial

S cd ~/cctools-tutorial
$ source etc/uofwm-env

OR manually set the following:

cctools_home=/usr/local/cctools

PATH=S{cctools_home}/bin:S{PATH}
PYTHONPATH=S{cctools_home}/1lib/python2.7/site-packages:S{PYTHONPA
TH}

TCP_LOW_PORT=10000

TCP_HIGHT_PORT=160999

export PATH PYTHONPATH TCP_LOW_PORT TCP_HIGH_PORT

See extra slides at end of presentation for manual
install/setup in your personal machines

if the following command fails, did you set PATH?

S work_queue_worker --version
work_queue_worker version 7.0.9 FINAL from source (released 2018-11-14 ©8:13:17 -0500)

Built by btovar@camd@3.crc.nd.edu on 2018-11-14 08:13:17 -0500

System: Linux camd@3.crc.nd.edu 3.10.0-862.el7.x86_64 #1 SMP Wed Mar 21 18:14:51 EDT 2018
x86_64 x86_64 x8
6_64 GNU/Linux

Configuration: --strict --build-label from source --build-date ..etc

makeflow

makeflow

A portable workflow manager.

makeflow

A portable workflow manager.

set of interdependent
computational tasks

makeflow
figure out which outputs are
inputs to some other task.
run tasks in order, as parallel as
possible.

A portable workflow manager.~\/

set of interdependent
computational tasks

makeflow

figure out which outputs are
inputs to some other task.
runs tasks on: run tasks in order, as parallel as

/\ possible.
condor \/

slurm A portable workflow manager.

sge
workqgueue
ec2

mesos
set of interdependent

computational tasks

17

makeflow examples repository

BLAST workflow adapted from the Biocompute web portal. (Shown at a scale of 10 splits.)

SSAHA genomics analysis workflow, courtesy of Scott Emrich and Notre Dame Bioinformatics Laboratory.
(Shown at scale of 25 splits.)

BWA genomics analysis workflow, courtesy of Scott Emrich and Notre Dame Bioinformatics Laboratory.
(Shown at scale of 20 splits.)

SHRIMP genomics analysis workflow adapted from the Biocompute web portal. (Shown at a scale of 100
splits.)

HECIL genomics analysis workflow, courtesy of Olivia Choudhury and Connor Howington.

Lifemapper Species Distribution Modeling (SDM) workflow, courtesy of C.J. Grady. (Shown at scale of 10
species and 5 random trials.)

SNPEXP Genomics analysis workflow courtesy of Scott Emrich and Notre Dame Bioinformatics
Laboratory.

BWA-GATK genomics workflow by Nick Hazekamp and Olivia Choudhury.

https://github.com/cooperative-computing-lab/makeflow-examples

https://github.com/cooperative-computing-lab/makeflow-examples

dependencies in Makeflow

- Task X depends on Task Y if Task X produces a file Task Y needs.

- Directed acyclic graph (DAG) where nodes are tasks, and edges
represent an input-output file dependency.

213

@ command I file

19

Task Execution Model

- e
|
o

put input
files into

|

|

|
sandbox i

: get output
; files from
sandbox - sandbox

20

Makeflow Architecture

input is an abstract
directed acyclic graph stats and
state kept by

transactions

— . logs

() —=

wrappers
that modify

how the
sandboxes
are created

drivers

sandboxes

S 1s
sim.exe some-input-file

§ ./sim.exe some-input-file some-output-file
S 1s
sim.exe some-input-file some-output-file

describing a task in makeflow

list of colon
outputs list of

/\ inputs

some-output-file. some-input-file sim.exe
/sim.exe some-input-file some-output-file

(Lcommand from
tab

the sandbox
perspective

23

comments start with a '#'
C: B sim.exe
./sim.exe B C

B: A sim.exe
./sim.exe A B

S cd ~/cctools-tutorial/makeflow/example_01
S 1s
A example_01.mf sim.exe

S makeflow example_01.mf

S 1s
A B C example_01.mf example_01.mf.makeflowlog sim.exe

S makeflow example_01

recovering from log file example_01.mf.makeflowlog...
starting workflow....
nothing left to do.

transactions and

S makeflow -c example_01
recovery log

S 1s
A example_01.mf sim.exe

declaring resources needed

my-simulations my-postprocess

Task 1: Task 3:

4 cores 1 cores
1024 MB of memory 2048 MB of memory
1000 MB of disk 2000 MB of disk

Task 2:

4 cores
1024 MB of memory
1000 MB of disk

declaring resources for tasks

Tasks are grouped into categories.

All tasks in a category have identical requirements for cores,
memory and disk.

Unless specified otherwise, all tasks belong to the "default”
category.

memory and disk in MBs
.MAKEFLOW CATEGORY my-simulations
.MAKEFLOW CORES 4

.MAKEFLOW MEMORY 1024

.MAKEFLOW DISK 1000

.MAKEFLOW CATEGORY my-postprocess
.MAKEFLOW CORES 1

.MAKEFLOW MEMORY 512

.MAKEFLOW DISK 206060

.MAKEFLOW CATEGORY my-simulations
Y: X sim.exe

./sim.exe X Y
B: A sim.exe

./sim.exe A B

.MAKEFLOW CATEGORY my-postprocess
results: B Y postprocess
./postprocess B Y > results

YA

cd ~/cctools-tutorial/makeflow/example_02

Run on condor with -Tcondor
size of slots requested as appropriate

makeflow example_02.mf -Tcondor

Confirm with the condor log the resource allocations:
grep -B1 -A2 Cpus example_02.mf.condorlog

Partitionable Resources: Usage Request Allocated
Cpus : 1 1
Disk (KB) : 21 2048000 3530078
Memory (MB) : 0 512 512

S cd ~/cctools-tutorial/makeflow/example_03

broken_sim.exe does not work

S ./broken_sim.exe A B

trying step 1 of ./broken_sim.exe A B
trying step 2 of ./broken_sim.exe A B
trying step 3 of ./broken_sim.exe A B
an error! oh no!

cat example_03.mf
log-of-A-to-B: A broken_sim.exe
./broken_sim.exe A B > log-of-A-to-B

-r N to retry a failed rule N times (default 10)
-dall To print debug info to stdout
makeflow -r2 -dall example_03.mf

partial outputs available per task
cat makeflow.failed.@/log-of-A-to-B

common pattern: execute large tasks locally
split1 split2 .. splitn: my-large-file
LOCAL ./split-my-files my-large-file

outputl: splitT
./process split1l > outputi

my-large-output: outputl output?2 .. outputn
LOCAL ./merge outputl output?2 .. > my-large-output

33

makeflow containers tutorial

http://ccl.cse.nd.edu/software/tutorials/makeflow/container-tutorial.ph
)

Makeflow Container Tutorial

For this tutorial, we will assume you have access to the XSEDE platform, specifically the Open Science Grid (OSG). If you do not, please speak with your campus champion
or get in touch with someone at XSEDE. This tutorial should be read only after completing the Makeflow tutorial.

Downloading the Singularity Image

Login to the XSEDE single sign-on portal 1ogin.xsede.org using ssh, PuTTY, or a similar tool. Then, login to the Open Science Grid by running:

gsissh osg

Once you have a shell, we will enter the tutorial directory used in the Makeflow tutorial:

cd S$HOME
cd tutorial

We will now pull the Singularity image we will use for this tutorial:

singularity pull docker://nekelluna/ccl makeflow examples

WARNING: pull for Docker Hub is not guaranteed to produce the

WARNING: same image on repeated pull. Use Singularity Registry

WARNING: (shub://) to pull exactly equivalent images.

Docker image path: index.docker.io/nekelluna/ccl makeflow examples:latest

Cache folder set to XXX/.singularity/docker

Importing: base Singularity environment

Exploding layer: sha256:22dc8lacefea2f45adé67b790cddad29%a45e206d51db0af826dc9495ba2laldb06.tar.gz
Exploding layer: sha256:1a8b3c87dba3edl6956c881a26eb0c40502c176a35767627d87557d16ealeldf.tar.qgz
Exploding layer: sha256:91390alc435a2066la9e%afdaeb81863829%a20d6eelccO6bbcab8ae4d51994f.tar.qgz

http://ccl.cse.nd.edu/software/tutorials/makeflow/container-tutorial.php
http://ccl.cse.nd.edu/software/tutorials/makeflow/container-tutorial.php

JX - JSON-like alternative makeflow language

Workflows can also be described in pure JSON or in an extended language known as
JX which can be evaluated to produce pure JSON.

JX is more flexible than the Unix Make syntax (E.g., it has functions, and operators.)
http://ccl.cse.nd.edu/software/manuals/jx-tutorial.html

Generate an array of 100 files named "output.l.txt", etc...
["output."+x+".txt" for x in range(1l,100)]

Generate one string containing those 100 file names.
join(["output."+x+".txt" for x in range(1,100) 1, " ")

Generate five jobs that produce output files alpha.txt, beta.txt,
{

"command” : "simulate.py > "name+".txt",
"outputs" : [name+".txt"],
“"inputs" : "simulate.py",

} for name in ["alpha", "beta"”, "gamma", "delta", "epsilon"] "

http://ccl.cse.nd.edu/software/manuals/jx-tutorial.html

makeflow as a
master-worker application

master-worker application

master process

In a master worker application...

37

master-worker application

master process

{ffom

the master process generates tasks...

38

master-worker application

master process

I task

... delivers them to worker processes to execute...

worker process

worker process

39

master-worker application

master process

... waits for workers to execute tasks ...

worker process
task task

worker process
task

40

master-worker application

master process A@\

and gathers the results on completion.

worker process
task

worker process

41

master-worker application

master process

I result

and on and on until no more tasks are generated.

worker process
task

worker process

42

pure condor vs wq master-worker

one condor job per task vs. one condor job per worker
When is it most beneficial?

e |ots of small tasks:
o Wait time in the condor queue proportional to the number of

workers, not the number of tasks.

e Workers can cache common input files, reducing transfer times.

e Workers may run in any pool, or resource you have access (including
non-condor resources).

master-worker application

worker process in
campus condor cluster

master process

worker process
\/ in EC2

44

pure condor vs wq master-worker

one condor job per task vs. one condor job per worker
When it is not beneficial?

Tasks are not easily described in terms of input-outputs.
o (e.g. streaming)

You need to use an advanced feature of condor.
You like to write highly customized condor submit files.

The worker process interferes with your task. (Wrappers all the way down.)

S cd ~/cctools-tutorial/makeflow/example_04

-Twg to use work queue
-M to give a name to our master. Workers will use this
name to find the master

S makeflow -Twg -M S{USER}-my-makeflow example_04.mf

see tasks waitings, workers connected, etc...
S work_queue_status

work_queue_status

‘cclwslé master example 03 > work queue status
PROJECT HOST

shadho-thermalize 45.55.219.221
|[btovar-my-makeflow cclwsl6.cse.nd.edu
.vortex network59 condorfe.crc.nd.edu
vortex network58 condorfe.crc.nd.edu
vortex network57 condorfe.crc.nd.edu
vortex network56 condorfe.crc.nd.edu
[pwa_step check disc24.crc.nd.edu
lobster rbucci Extr Tab 20 |earth.crc.nd.edu
lobster rbucci SingleMuPtl |earth.crc.nd.edu
.lobster rbucci Extr Tight [earth.crc.nd.edu
‘lobster rbucci Extr Loose | earth.crc.nd.edu
|Lobster rbucci SingleElecty earth.crc.nd.edu
forcebalance entropy.ucsd.edu
forcebalance nighthawk.ucsd.edu
smallpyr 2c local 01100100 submit-1.chtc.wisc.edu
smallpyr 2c local 00000000 submit-1l.chtc.wisc.edu

S{USER}-my-makeflow

PORT WAITING RUNNING COMPLETE WORKERS

9123
9000
37763
37762
37761
37760
9050
9000
9004
9001
9002
9003
1800
3397
10017
10013

400

OFRPOOOON

1
10
32

15

0
0
3
2

60438
0
997
998
2197
998
0
4867
1647
4686
4505
207
1612
0

0

72

in another terminal..

-M S{USER}-my-makeflow to serve masters with that name
it could be a regexp.

--single-shot to terminate after serving one master
In general workers may serve many masters in their

lifetime, but only one at a time.

S work_queue_worker --single-shot -M S{USER}-my-makeflow

how did the worker find the master?

master process
worker process

where is a master
with name ...?

my name is...
| am at ...

catalog server
ccl.cse.nd.edu

49

if the defaults don't work for you

Before launching the makeflow, specify the range of ports available
default range is 9000-9999
source .../etc/uofwm-env sets the following range:

export TCP_LOW_PORT=10000
export TCP_HIGH_PORT=10999

Instead of -M:

use —port at the master to specify a port to listen
specify address of master and port at the worker

If you must, you can also run your own cctools/bin/catalog_server (-C option)

50

H

H HF H R

using \ to break the command in multiple lines
you can omit the \ and put everything in one line

run 3 workers in condor, each of size 1 cores, 2048 MB
of memory and 4096 MB of disk,
to serve S{USER}-my-makeflow
and which timeout after 60s of being idle.
condor_submit_worker --cores 1 \
--memory 2048 \
--disk 4096 \
-M S{USER}-my-makeflow \
--timeout 60 \

3

resources contract:
running several tasks in a worker concurrently

Worker has Task needs:
available:

1 cores m cores

j MB of memory n MB of memory
k MB of disk o MB of disk

Task runs only if it fits in the currently
available worker resources.

resources contract example

Task a:

Worker has

. 4 cores
available:

100 MB of memory

100 MB of disk
8 cores

512 MB of memory
512 MB of disk

Task b:

3 cores
100 MB of memory
100 MB of disk

Tasks a and b may run in worker at the same time.
(Work could still run another 1 core task.)

Beware!
tasks use all worker on missing declarations

Task a:
Worker has

. 4 cores
available:

100 MB of memory

8 cores

512 MB of memory T o
500 TB of disk

3 cores
100 MB of memory

Tasks a and b may NOT run in worker at the same time.
(disk resource is not specified.)

S work_queue_factory -Tcondor \
-M some-master-name
--min-workers 5

--max-workers 200
--cores 1 --memory 4096 --disk 10000
--tasks-per-worker 4

S work_queue_factory -Tcondor -C my-conf.json
§$ cat my-conf.json

{

"master-name"” : "some-master-name",
"max-workers": 200,

"min-workers": 5,
"workers-per-cycle": 5,

"cores": 1,

"disk": 10000,

"memory"” : 4096,

"timeout”: 900,
"tasks-per-worker": 4

H

put a passphrase in a text file, say my.password.txt

tell master to use the password:

makeflow .. --password my.password.txt

tell workers to use the password:

work_queue_workers .. --password my.password.txt

NOTE THAT THE PASSWORD IS SIMPLY TO VERIFY A HANDSHAKE

IT MAY NOT PROTECT AGAINST MALICIOUS ATTACKS

break

writing master-worker
applications with
work queue

makeflow vs. work queue when describing
workflows

makeflow:
directed-acyclic graph dynamic model
workflow structure is fixed and static
computes dependencies between tasks
classic unix make language or JSON

work queue:
submit-wait programming model
workflow structure can be decided at run time
when a task is declared, it is assumed to be ready to run
bindings in C, python2, python3, and perl

60

skeleton of a work queue application

1. create and configure a queue
2. create and configure tasks
3. submit tasks to the queue

4. wait for tasks to complete

a. if no new tasks to submit, terminate

b. otherwise goto 2

61

minimal work queue application

import work_queue as WQ

#

0

—~+ 3

~+ ~+ ~+

#
q

7

1. master named: 'my-master-name’, run at some port at random
= WQ.WorkQueue(name="my-master-name', port=0)

2. create a tasks that runs a command remotely, and ...
= WQ.Task('./sim.exe A B')

...specify the name of input and output files

.specify_input_file('sim.exe', cache=True)
.specify_input_file('A")
.specify_output_file('B")

3. submit the task to the queue

.submit(t)

4. wait for all tasks to finish, 5 second timeout:

while not qg.empty():

t = g.wait(5)
if t.result == WQ.WORK_QUEUE_RESULT_SUCCESS:
print 'task {} finished'.format(t.id)

tell python where to find work queue
source ~/cctools-tutorial/etc/uofwm-env

>

S cd ~/cctools-tutorial/work_queue/example_01

+H

modify wq_mini.py with a master name you like,
(currently set to S{USER}-my-first-master), then
python example_01.py

> FH*

H

in some other terminal, launch a worker for that master
workers don't need PYTHONPATH set.
work_queue_worker -M your-master-name --single-shot

>

parameter sweep example

from work_queue import WorkQueue, Task

1. create the queue
q = WorkQueue(name='my-parameter-sweep', port=0)

for 1 in range(1..1000):
2. create a task

t = Task('./cmd -output out.{1} -parameter {1}'.format(1l))
t.specify_input_file('cmd', cache=True)

t.specify_output_file('out.{}'.format(1l))
3. submit the task to the queue
q.submit(t)

4. wait for all tasks to finish, 5 second timeout:
while not qg.empty():

t = gq.wait(5)

if t:

64

submit the same task multiple times
keep the result of the one that terminates the fastest.

t = Task(...)
t.specify_tag('some_identifying_tag')

for n in range(0..5):
t_copy = t.clone()
q.submit(t_copy)

while not qg.empty():
t_fastest = g.wait(5)
if t_fastest:
g.cancel_by_tasktag('some_identifying_tag')
break

q.specify_category_max_resources('my_category',
{

'‘cores’' : 1,

‘memory’ : 1024,

‘disk’ : 1014
})

t = Task('...")
t.specify_category('my_category')

managing resources

Do nothing (default if tasks don't declare cores, memory or disk):
One task per worker, task occupies the whole worker.

Honor contract (default if tasks declare resources):

Task declares cores, memory, and disk (the three of them!)
Worker runs as many concurrent tasks as they fit.
Tasks may use more resources than declared.

Monitoring and Enforcement:
Tasks fail (permanently) if they go above the resources declared.

Automatic resource labeling:
Tasks are retried with resources that maximize throughput, or minimize waste.

.enable_monitoring()

= g.wait(...)

resources assigned to the task
.cores, .memory, .disk
.resources_allocated.cores

resource really used
.resources_measured.memory

which limit was broken?

if t.result == WORK_QUEUE_RESULT_RESOURCE_EXHAUSTION:
if t.limits_exceeded.disk > -1:

q.specify_category_max_resources('my_category',

{
‘cores' . n, ‘memory’ . MB, 'disk’': MB,
‘'wall_time': us, 'cpu_time': us, ‘'end': us,
'swap_memory' : MB,

'bytes_read’' : B, 'bytes_written': B,
'bytes_received': B, ‘'bytes_sent': B,
"bandwidth’': B/s

‘work_dir_num_files': n

-}

automatic resource labeling
when you don't know how big your tasks are

\II-.IIII-} \--.-}
Y f

Tasks which size workers
(e.g., cores, memory, and disk)
is not known until runtime.

One task per worker:
Wasted resources, reduced throughput.

Many tasks per worker: FI.I

Resource contention/exhaustion, reduce —

-
throughput 1 |] 70

Task-in-the-Box

|

workers

71

Task-in-the-Box

Allocations
inside a worker

A

|

Workers

72

Task-in-the-Box

One task per One task per

allocation allocation

\)
\

|

workers

73

Task-in-the-Box

Onetask per Task exhausted
allocation its allocation

\)
\

|

workers

74

Task-in-the-Box

One task per Retry allocating a
allocation whole worker
) A

|

workers

75

of tasks

ND CMS example

Real result from a production High-Energy Physics CMS analysis
(Lobster NDCMS)

Histogram Peak Memory vs Number of Tasks
O(700K) tasks that ran in O(26K) cores managed by WorkQueue/Condor.

ideal
first-allocation
predicted by model

45000

0 - - - — = — — = -
1640 1780 2200 3000

200 775 1050 1320 1450
MB memory (RAM) per task \

First-allocation that maximizes expected

Tovar, et.al throughput
DOI:10.1189/TPDS.2081/.2762318 (increase of %40 w.r.t. no task is retried)

http://dx.doi.org/10.1109/TPDS.2017.2762310

automatic resource labeling

compute retries for maximum throughput
.specify_category_mode('my_category',
work_queue .WORK_QUEUE_ALLOCATION_MODE_MAX_THROUGHPUT)

compute retries for minimum waste
.specify_category_mode('my_category',
work_queue.WORK_QUEUE_ALLOCATION_MODE_MIN_WASTE)

task fails at first resource exhaustion (default)
.specify_category_mode('my_category',
work_queue .WORK_QUEUE_ALLOCATION_MODE_FIXED)

task is tried at bigger workers when available
.specify_category_mode('my_category',
work_queue .WORK_QUEUE_ALLOCATION_MODE_MAX)

an explicit hard limit is reached...
.specify_category_max_resources('my_category', ..)

or maximum number of retries is reached:
(default 1)
.specify_max_retries(n)

note that you can define categories for which
no hard limit is reached, then only max retries
is relevant.

what work queue does behind the scenes

1. Some tasks are run using full workers.
2. Statistics are collected.
3. Allocations computed to maximize throughput, or minimize waste.
a. Run task using guessed size.
b. If task exhausts guessed size, keep retrying on full (bigger) workers,
or a specified is reached.
4. When statistics become out-of-date, go to 1.

resources example

q.enable_monitoring()

create a category for all tasks
g.specify_category_max_resources('my-tasks', {'cores': 1, 'disk': 500})
g.specify_category_mode('my-tasks',
WQ.WORK_QUEUE_ALLOCATION_MODE_MAX_THROUGHPUT)

create 30 tasks. A task creates a 200MB file, using 10MB of memory buffer.
for i in range(0,30):

t = WQ.Task('python task.py 200')
.specify_input_file('task.py', cache = True)
.specify_category('my-tasks')
.specify_max_retries(2)
.submit(t)

O + +

create a task that will break the limits set
= WQ.Task('python task.py 1000')
.specify_input_file('task.py', cache = True)
.specify_category('my-tasks')
.specify_max_retries(2)

.submit(t)

O+ + + ~+ FH

while not g.empty():
t = g.wait(60)

§ source ~/cctools-tutorial/etc/uofwm-env
S cd ~/cctools-tutorial/example_02
S python example_02.py

WorkQueue on port: NNNN

in another terminal, create a worker:

(-dall -o:stdout to send debug output to stdout)

S work_queue_worker -M S{USER}-master --disk 2000 -dall -o:stdout |
grep 'Limit’

. cctools-monitor[8837] error: Limit disk broken.

A"C to kill the worker

check resources statistics

S work_queue_status -A localhost NNNN

CATEGORY RUNNING WAITING FIT-WORKERS MAX-CORES MAX-MEMORY MAX-DISK
my-tasks 0 50 0 1 ~10 >500

work_queue_status -A HOST PORT

information about waiting tasks and resources

CATEGORY RUNNING WAITING FIT-WORKERS MAX-CORES MAX-MEM MAX-DISK

my-cat-a
my-cat-b
my-cat-c

2 20 2 1 ~1024 ~2000
0 15 0 1 >3000 ~1000
0 0 0 7?77 7?77

fixed resource no fixed resource

No info on set, and all tasks
tasks waiting. have run under this
value

> At least one task that is

now waiting, failed exhausting
these much of the resource.

S makeflow -Tcondor --monitor=my_dir Makeflow

one resource summary per rule:
S cat mydir/resource-rule-2.summary

.MAKEFLOW CATEGORY MY_FIRST_CATEGORY
.MAKEFLOW MODE MAX_THROUGHPUT
.MAKEFLOW CATEGORY MY_SECOND_CATEGORY
.MAKEFLOW MODE MIN_WASTE

.MAKEFLOW CATEGORY MY_OTHER_CATEGORY
.MAKEFLOW MODE FIXED

.MAKEFLOW CATEGORY MY_FIRST_CATEGORY
output_a: input_a
cmd < input_a > output_a

.MAKEFLOW CATEGORY MY_SECOND_CATEGORY
output_b: input_b
cmd < input_b > output_b

.MAKEFLOW CATEGORY MY_OTHER_CATEGORY

output_c: input_c
cmd < input_c > output_c

% makeflow --monitor=my_dir --retry-count=5

import work_queue as WQ

record of the states of tasks and workers
specially useful when tracking tasks resource

usage and retries

.specify_transactions_log('my_transactions.log')

workers joined, tasks completed, etc. per time step
.specify_log('my_stats.log')

transactions log

$ grep '\<TASK 1\>' example_02.tr

1550697985850270 9374 my-tasks FIRST RESOURCES {"cores":[1,"cores"]}
1550698004105770 9374 127.0.0.1:40730 FIRST RESOURCES {"cores":[1,"cores"],"memor:
= IIMBII]}

1550698004473367 9374 127.0.0.1:40730

1550698004475215 9374 RESOURCE EXHAUSTION {"disk":[20,"MB"]} {"start":[155069800:

698004259680, "us"],"cores avg":[0.989,"cores"],"cores":[1,"cores"],"wall time":[0.14619,"s"], "cpu
X_concurrent processes":[1l,"procs"],"total processes":[1l,"procs"],"memory":[1,"MB"],"virtual memo
“:[0,"MB"],"bytes read":[0.00138569,"MB"],"bytes written":[0,"MB"],"bytes received":[0,"MB"], "byt:
dth":[0,"Mbps"], "total files":[7,"files"],"disk":[201,"MB"], "machine cpus":[8,"cores"], "machine Ll¢

1550698004475384 9374 my -tasks MAX RESOURCES {"cores":[1l,"cores"],"memory":[1,"MB"
1550698046053626 9374 127.0.0.1:40734 MAX RESOURCES {"cores":[1,"cores"], "memory"
IIMBII] }

1550698046444043 9374 127.0.0.1:40734

1550698046445440 9374 SUCCESS {"start":[1550698046079981, "us"],"end":[1550698046.

[0.989,"cores"],"cores":[1,"cores"],"wall time":[0.146097,"s"],"cpu _time":[0.144457,"s"],"max_con
ocs"],"total processes":[1,"procs"],"memory":[1,"MB"],"virtual memory":[6,"MB"], "swap memory":[0O,
38569, "MB"], "bytes written":[0,"MB"],"bytes received":[0,"MB"], "bytes sent":[0,"MB"], "bandwidth":
[7,"files"],"disk":[201,"MB"], "machine cpus":[8,"cores"], "machine load":[0.31,"procs"]}
1550698046445762 9374 SUCCESS {"start":[1550698046079981,"us"],"end":[155069804622607!
9,"cores"],"cores":[1,"cores"],"wall time":[0.146097,"s"],"cpu time":[0.144457,"s"], "max_concurrel
, "total processes":[1,"procs"],"memory":[1,"MB"],"virtual memory":[6,"MB"], "swap memory":[0,"MB"]
,"MB"],"bytes written":[0,"MB"],"bytes received":[0,"MB"],"bytes sent":[0,"MB"], "bandwidth": [0, "Ml
iles"],"disk":[201,"MB"], "machine cpus":[8,"cores"],"machine load":[0.31,"procs"]}

86

statistics log

Use work_queue_graph_log to visualize the statistics log:

tasks instantaneous cou|

waiting =il
on workers =

unging —@—
with res0

a0 50

master lifetime in {

TASTADOMEN s
idled out, =g
lost

master lifetime in m|

sent —t—
received —p—

master data transfer

master lifetime in minutes

master lifetime in minutes

ation per time sample (%)

master time proportions

30

master lifetime in minutes

other IE— send E— status msgs I—
application m— polling m—
receive I— internal

cancelled st

exhausted atempts

87

master lifetime in minutes

S work_queue_status -1 HOST PORT
{"name" :"cclws16.cse.nd.edu", "address" :"129.74.153.171", "tasks_total_di
sk":9, ...

current stats counts (e.g., g.stats.workers_idle)
q.stats
q.stats_by_category('my-category'))

available stats

http://ccl.cse.nd.edu/software/manuals/api/html/structwork__queue__stats.html

miscellaneous work queue calls

kill workers slower than alpha times the average
.activate_fast_abort(alpha)

O 3

blacklist a worker
.blacklist(hostname)

O 3

remove cached file from workers
.invalidate_cache_file(filename)

O 3

specify password file
.specify_password_file(filename)

O H

remote name of files
.specify_{in|out}put_file(name-at-master, name-at-worker, ...)

O H

H

produce monitoring snapshots at certain events
(e.g., a regexp in a log appears, or a file is created/deleted)
t.specify_snapshot_file('snapshot-spec.json")

resources per task
.specify_cores(n)
.specify_memory(n)
.specify_disk(n)

~+ ~+ ~+ F

Work Queue API

http://ccl.cse.nd.edu/software/manuals/api/html/namespaces.html

90

http://ccl.cse.nd.edu/software/manuals/api/html/namespaces.html

resource_monitor -L"cores: 4" -L"memory: 4096" -- cmd

cclws16 ~ > resource_monitor -il1 -Omon --no-pprint -- /bin/date

Thu May 12 20:27:21 EDT 2016

cclws16 ~ > cat mon.summary

{"executable_type”:"dynamic”, "monitor_version”:"6.0.0.9edd8e96"”,"host”:"cclws16.cse.nd.edu
","command”:"”/bin/date”, "exit_status”:0,"exit_type”:"normal”,"”start”:[1463099241605723, "us
"1,"end”:[1463099243000239, "us”], "wall_time"”:[1.39452,"s"],"cpu_time”:[0.002999, "s"], "core
s":[1,"cores”], "max_concurrent_processes”:[1,"procs”], "total_processes”:[1, "procs”], "memor
y":[1,"MB"], "virtual_memory”:[107,"MB"], "swap_memory”:[@,"MB"], "bytes_read”:[0.0105429, "MB
"1, "bytes_written”:[0,"MB"], "bytes_received”:[0,"MB"], "bytes_sent”:[0,"MB"], "bandwidth”:[@
,"Mbps”],"total_files”:[90546,"files”], "disk”:[11659,"MB"], "peak_times”:{"units”:"s"”, "cpu_
time”:1.39452,"cores”:0.394445, "max_concurrent_processes”:0.394445, "memory"”:0.394445, "virt
ual_memory”:1.39428, "bytes_read”:1.39428,"total_files”:1.39428,"disk"”:1.394283}}¥

http://ccl.cse.nd.edu/software/manuals/resource_monitor.html

thanks!

guestions:
btovar@nd.edu

forum:
https://ccl.cse.nd.edu/community/forum

manuals:
http://ccl.cse.nd.edu/software

repositories:
https://qithub.com/cooperative-computing-lab/cctools
https://qithub.com/cooperative-computing-lab/makeflow-examples

% e UNIVERSITY OF —0—-0—

NOTRE DAME CCTools

mailto:btovar@nd.edu
https://ccl.cse.nd.edu/community/forum
http://ccl.cse.nd.edu/software
https://github.com/cooperative-computing-lab/cctools
https://github.com/cooperative-computing-lab/makeflow-examples

extra slides

configuring tasks

from work_queue import Task

T

T.

= Task('shell command to be executed')
specify_input_file('path/to/some/file')

files can be cached at workers

.specify_input_file('path/to/other/file', cache=True)

same for output files

.specify_output_file('path/to/output/file')
.specify_output_file('path/to/other/output’', cache=True)

if directory name, send/receive recursively

.specify_directory('some/dir’,

recursive=True,
type=work_queue .WORK_QUEUE_INPUT)
or type=work_queue.WORK_QUEUE_OUTPUT)

download binary package (try at home)

For most of you at University of Wisconsin-Madison:

hitp://ccl.cse.nd.edu/software/download

and download the most recent stable version for redhat 7 into ~/cctools-tutorial

or for today, shortcut in a terminal:

S c¢d ~/cctools-tutorial
S bin/download-cctools

http://ccl.cse.nd.edu/software/download

$ cd ~/cctools-tutorial

decompress cctools
tar -xf cctools-*-redhat7.tar.gz

>

move to canonical destination
mv cctools-*-redhat7 cctools

> FH*

setup environment (you may want to add these
lines to the end of .bashrc)
PATH=:~/cctools-tutorial/cctools/bin:S{PATH}
export PATH

U U H H

(or for today, set your environment with:)
source ~/cctools-tutorial/etc/cctools-env

> I

S c¢d ~/cctools-tutorial

#
S

decompress cctools
tar -xf cctools-*-src.tar.gz

configure and install

cd cctools-*-src

./configure --prefix ~/cctools-tutorial/cctools
make

make install

W U H

