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Illumina (HiSeq2000), 454 (Titanium) and Sanger 

 

Generation per month: 6.6 billion reads 668 Gbp 

Plus external data 

 

454 is still viable for metagenomics and viral assembly. In one recent 

test on marine dataset, it gave better assemblies and more read-

based BLASTP protein hits than 100x more Illumina data from the 

same sample, with corresponding savings in CPU cost 

 

JCVI’s current computing capability: 

 

1700 cores, several petabytes of storage 

1 million 454 reads can be annotated in  

24 CPU hours (1 day) with 180 nodes (720 cores) = 17280 CPU*hrs. 

 

JCVI sequencing and computing 
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Metagenomic Annotation Pipeline Overview 
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Main workflow support 

 VICS – Venter Institute Compute Services 

 Java server application 

 A workflow is described by a mix of XML (sequence of workflow steps as local jobs, 
single SGE jobs, SGE array jobs) and Java classes (generation of each step inputs 
and command lines) 

 Talks to the SGE cluster via DRMAA 

 Web form interface is generated (some extra Java code is needed to describe 
input fields) 

 SOAP bindings are generated automatically 

 Workflow becomes part of the code base and needs to be deployed into a specific 
server 

 No restart capability – if one step fails because of node failure, workflow has to be 
re-run from scratch 

 Plans are to use Kepler workflows inside VICS in place of VICS native 
implementation 
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Celera Assembler Pipeline 
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Workflow is self-resubmitting SGE jobs with dynamic modification of 

existing job dependencies, Perl script 



Ways to scale BLAST at JCVI 

 Example used is BLASTP search of proteins annotated on Velvet assembly of one HMP sample against  
PANDA DB (124,000 peptides of average length 176). E-value cutoff 10E-5. 

• “Matrix” of serial NCBI BLAST jobs <Query chunk> X <DB partition> on HTC cluster,  followed by a 
single aggregator job 

• Runs under VICS workflow manager 

• 660 CPU*hrs 

• TimeLogic Tera-BLAST 

• FPGA card, closed source, implements something similar to older NCBI one-hit extension algorithm with default word size 
4 (for BLASTP) 

• Runs under VICS 

• 1.3 CPU*hrs (where “CPU” is one TimeLogic card) 

• 500x speed up over NCBI BLAST on one CPU core 

• Lost about 10,000 hits out of 700,000 

• mpiBLAST from VA-Tech on TACC Ranger 

• NCBI C Tookit code patched and integrated into MPI application. Worker nodes send hits from seeds to master node that 
tells them which ones to extend, thus providing superlinear speed-up. Many other optimizations (MPI-IO, virtual DB files 
etc). 

• We were not able to run it stably on TACC Ranger in 2010 despite going through the matrix of different 
(compiler)(MPI)(runtime options) and support lists. It had some fixes after that but we did not try again. 

• Lessons learned: TimeLogic seems to be a solution (even considering its price), but it will never give the same 
results as NCBI BLAST. It is simply somewhat different algorithm. 
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Storage 

 Current solutions at JCVI - NFS (NetApp) and NFS-compatible clustering FS (Isilon) 

 Most flexible – provides tradition random access file operations on a shared 
filesystem 

 Expensive to scale with increasing number of compute nodes 

 Solutions like Hadoop Distributed Filesystem are economical to scale, but at the 
expense of recasting all applications into streaming data access patterns 

 JCVI has a 16 node Hadoop cluster that is currently used to a test-bed for Cloud 
Viral Annotation project 

 If external computing resources are used, the transfer to and from its filesystems 
becomes a bottleneck. 25G BLAST DB took 50 min to push from JCVI to TACC with 
gridFTP (we are connected to Internet 2). Transfer can easily take longer than 
processing. 

 Local solutions like TimeLogic do not have this network transfer issue (you only 
pushing to a dedicated machine on your local network) 
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Bioinformatics on large cyber 

infrastructure 

 Two NSF projects (metagenomic taxonomic assignment 
and proteogenomics) had been requested by the 
funding agency to use TeraGrid/XSEDE 

 Most TeraGrid clusters schedule efficiently only large 
MPI jobs (100s of CPU cores) 

 Workflows of many serial jobs are not supported by 
local resource managers 

 Two ways to use such supercomputers for serial 
workflows: 

 Fake serial High Throughput Computing 

 Re-write workflows into MPI parallel code, at least for 
critical parts 
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Accommodating supercomputer to existing 

bioinformatics pipelines 

 Two-level scheduling (“glide-ins”) 

 Condor “glide-ins”, glideinWMS, SWIFT, MyCluster and Makeflow with MPI 
WorkQueue workers. 

 E.g. SWIFT takes care of everything – data movement, resubmission of failed jobs, 
optimizing glide-in allocation, quick scheduling of very small jobs. 

 WorkQueue implementation is more restricted, but the big advantage is that the 
same Makeflow file can be executed on a serial SGE or Condor cluster 

 Glide-in tools require certain minimum level of host OS support (Posix “fork” – not 
available on earlier Blue Gene OSes) 

 SWIFT develops its own ecosystem that includes a Linux kernel on BlueGene (“fork”; 
shared RAM caching drives local to the groups of compute nodes; tuning to BG 
network topology) 

 Data exchange and synchronization is through files, unless a specific pattern is 
implemented internally by the workfllow engine like AllPairs or MapReduce in 
CCTools 
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MR-MPI BLAST+ implementation 
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 A regular MPI program – runs on any 
supercomputer with a shared file system 

 Makes high-level API calls to unmodified 
NCBI C++ Toolkit – results are fully 
compatible with the upstream NCBI 
code; easy to keep up to date 

 Implemented with MapReduce MPI (MR-
MPI) library from Sandia Lab that helps 
organizing computations and data flow 

 The library scheduler was modified to 
solve the problem of maintaining context 
between map() calls – a common 
problem with the classical MapReduce 
algorithm 

 Performs sorting of final output in 
parallel. This is an advantage compared 
to a typical HTC matrix-split 
implementation with a single combiner 
job for sorting, if the number of hits is 
large Control flow of the MR-MPI BLAST 



MR-MPI BLASTN and BLASTP scaling 
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Scaling chart for MR-MPI BLASTN showing process wall 

clock time at different total core counts in MPI job. The 

total number of query sequences is 40,000. The 

sequences are split into 40 blocks of 400 kbp. Each 

block, when combined with one DB partition, forms a 

sequential work unit for the MapReduce algorithm. The 

data point labels represent time in minutes. 

DB is NCBI WGS+nt+hg (109 1G formatted partitions). 

"Useful" CPU utilization per core during the course of the 

computation for the MR-MPI BLASTP run with 1024 

cores. CPU user time used at any given moment within a 

BLAST call was divided by the corresponding wall clock 

time, summed over all concurrent calls, and divided by a 

total number of cores allocated to the MPI program. 



MGTAXA – composition-based taxonomic classification 

in metagenomes: http://andreyto.github.com/mgtaxa/ 

Predict taxonomy for bacterial metagenomic sequences 

• Glimmer ICM based classifier (similar to Phymm approach). Parallelized on HTC 
cluster, Galaxy Web interface. Sequences above 300 bp. 

• BLAST+ and Batch SOM implementations for HPC clusters with MPI-MapReduce 
framework. Calls to pristine NCBI BLAST+ API – full compatibility. Scales to 2000 
cores on TeraGrid (TACC Ranger). 

Predict hosts for bacteriophages in metagenomes 

• Explores compositional similarity between phage and host 

• ICM and SOM for prediction and visualization 

• Assigns phage scaffolds (5Kbp) to bacterial sequences 

• Uses infrastructure and interfaces of the bacterial classifier 

CRISPR pipeline 

• Scans genomes & metagenomes for CRISPR arrays and genes 

• Connects with viral metagenomes through spacer matches – alternative way to 
establish the bacteriophage-host relationship 

• Parallelized on HTC cluster 

13 

http://andreyto.github.com/mgtaxa/


Server - architecture 
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Protein-protein docking 

 A way to model protein interactions 

 Given a 3D structures of two unbound proteins, predict a 
3D structure of their complex (transient or obligate) 

 GRAMM-X docking Web server created while at KU, has 
been running since 2006 

 Current NSF-Microsoft grant to implement enhanced 
version in Azure cloud 
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Client-cloud docking application (Azure) 
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•Scaling in Azure is 

clumsy 

•Iterative user-driven session 
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•Framework is designed for portability to other clouds or clusters 

•Only a small bootstrap .NET module – the rest is Java 

Generic self-spinning, self-scaling framework for running any Makeflows in Azure 



Porting Proteogenomics Pipeline to 

XSEDE 

 NSF project to use proteomics data for improving 
genome annotation (PI Sam Payne, now at PNNL) 

 Was originally implemented as VICS pipeline with a 
mix of single and array SGE jobs 

 10 GB of input files, 200 jobs, total CPU time 300 hrs 

 Using Makeflow, it was made portable across XSEDE 
SGE MPI sites and serial SGE clusters like JCVI’s 

 Still assumes shared file system on the cluster – too 
much work to get rid of deep directory structure in 
each workflow instance 
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Viral annotation pipeline in EC2 and Ecalyptus 
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•PI: Konstantinos 

Krampis; white paper 

funded by NIH GSC 

•Make existing JCVI 

viral assembly and 

annotation pipeline 

public by creating a 

cloud port 

•Porting annotation is 

straightforward 

•Assembly internally 

includes closure step 

Web 

browser 

interface to 

Galaxy 

• One virus annotation is cheap serial pipeline. This is 

already ported. 

•One lane of Illumina sequences 100 viruses with SISPA 

barcoding 

•Assembly and annotation of all is currently done with 

shell scripts + CLC Workbench 

•CLC will have to be replaced with open source tool 

•Some workflow engine can simplify work a lot 
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