
HIGH ENERGY PHYSICS ON 
THE OSG

Brian Bockelman
CCL Workshop, 2016



SOME HIGH ENERGY 
PHYSICS ON THE OSG (AND 

OTHER PLACES TOO)
Brian Bockelman

CCL Workshop, 2016



WHY DO PHYSICISTS NEED 
COMPUTERS?

Remind me again -



WHERE DO EVENTS COME 
FROM?

• The obvious source is 
the detector itself.

• We must take the raw 
readouts and 
reconstruct them into 
physics objects.

• These objects 
represent things that 
have meaning to a 
physicist (muons, 
electrons, jets of 
particles).



LIFETIME OF A SIMULATED 
EVENT

• GEN - Given a desired physics signal, generate a particle 
decay from the random number generator.

• SIM - Given the GEN output, simulate the particles’ paths 
and decay chains.

• DIGI - Given the simulated particles, simulate the detector 
readout.

• RECO - Reconstruct detector readout into physics objects.



SIMPLE STATS FOR THE LHC AND CMS  
2016 EDITION

• 40MHz of “bunch crossings”; each crossing results in about 25 particle collisions.  One billion collisions a 
second.

• Most are “boring” (for some definition of boring).  We write out 1,300 events / seconds to disk.

• 85 days of running time / year = 10B recorded events.

• For CMS, reconstruction takes about 14s / event.  Reconstruction of the year’s dataset is 54,000 CPU-
months.

• We aim for 1.3 simulated events per “real” event.  GEN-SIM takes 44s / event and DIGI-RECO takes 26s / 
event: 350,000 CPU-months.

• CPU requirements go up quadratically with number of collisions per beam crossing.  We expect an increase 
from 25 to 35 next year.

• Depending on the data format used, the event size is 30KB to 500KB.

(Note: all numbers given are correct to the order-of-magnitude; accurate current performance information is considered private)



AND FINALLY, ANALYSIS
• After reconstruction of data and simulated events, 

we deliver groups of events into coherent 
datasets to physicists.

• The physicists scan the datasets, comparing the 
number of recorded events with a given signature 
against the expected number from known physics.

• A discovery requires 5-sigma deviation of the 
signal from the expected behavior.

• Determining these uncertainties is what drives 
the need for simulation.

• CPU and IO needs of analysis vary by two orders 
of magnitude - depends on the physicists.

• Needs are difficult to model!  I think of it as a 
fixed percentage (60%) of centralized 
production needs.

5.2 H ! ZZ 13

 (GeV)Ɛ4m
80 100 120 140 160 180

E
ve

nt
s 

/ 3
 G

eV

0

2

4

6

8

10

12

14

16 Data

Z+X
*, ZZγZ
=125 GeVHm

CMS -1 = 8 TeV, L = 5.3 fbs  -1 = 7 TeV, L = 5.1 fbs

 (GeV)Ɛ4m
120 140 160

E
ve

nt
s 

/ 3
 G

eV

0

1

2

3

4

5

6  > 0.5DK

Figure 4: Distribution of the four-lepton invariant mass for the ZZ ! 4` analysis. The
points represent the data, the filled histograms represent the background, and the open his-
togram shows the signal expectation for a Higgs boson of mass mH = 125 GeV, added to the
background expectation. The inset shows the m4` distribution after selection of events with
KD > 0.5, as described in the text.

Table 3: The number of selected events, compared to the expected background yields and ex-
pected number of signal events (mH = 125 GeV) for each final state in the H ! ZZ analysis. The
estimates of the Z+X background are based on data. These results are given for the mass range
from 110 to 160 GeV. The total background and the observed numbers of events are also shown
for the three bins (“signal region”) of Fig. 4 where an excess is seen (121.5 < m4` < 130.5 GeV).

Channel 4e 4µ 2e2µ 4`
ZZ background 2.7 ± 0.3 5.7 ± 0.6 7.2 ± 0.8 15.6 ± 1.4
Z + X 1.2+1.1

�0.8 0.9+0.7
�0.6 2.3+1.8

�1.4 4.4+2.2
�1.7

All backgrounds (110 < m4` < 160 GeV) 4.0 ± 1.0 6.6 ± 0.9 9.7 ± 1.8 20 ± 3
Observed (110 < m4` < 160 GeV) 6 6 9 21
Signal (mH = 125 GeV) 1.36 ± 0.22 2.74 ± 0.32 3.44 ± 0.44 7.54 ± 0.78
All backgrounds (signal region) 0.7 ± 0.2 1.3 ± 0.1 1.9 ± 0.3 3.8 ± 0.5
Observed (signal region) 1 3 5 9



HOW DO WE DO IT?



DISTRIBUTED  
HIGH THROUGHPUT  

COMPUTING
• Practically every HEP experiment has built their computing 

infrastructure around the concept of distributed high 
throughput computing (DHTC).

• High-Throughput Computing: maximizing the usage of a 
computing resource over a long period of time. “FLOPY, not 
FLOPS”.

• Distributed HTC: Utilizing a variety of independent computing 
resources to achieving computing goals.  “The Grid”.



THE OPEN SCIENCE GRID
• The OSG is a “national, distributed computing 

partnership for data-intensive research”.

• Consists of a fabric of services, software, and a 
knowledge base for DHTC.

• Partnership is between different organizations 
(science experiments, resource providers) 
with an emphasis on sharing of opportunistic 
resources and enabling DHTC.

• Around 50 different resource providers and 170k 
aggregate cores.



FIRST,  YOU NEED A POOL
• One of the most valuable services OSG provides is a HTCondor-pool-on-demand.

• You provide the HTCondor submitters (condor_schedd) and a credential; we provide 
HTCondor worker nodes (condor_startd) from various OSG resources.

• Bulk of these worker nodes come from the OSG Factory submitting jobs to a remote batch system 
through a Compute Element.  These pilot jobs will be started by the site batch system and launch the 
condor_startd process.

• Don’t think of this as submitting jobs to a batch system, but rather as a resource acquisition.

• Resources might be ones you own, opportunistic resources, or some combination.

• Allows the experiment to view the complex, heterogeneous grid as a single pool of resources.

• Not all organizations will use the OSG-provided factory and interact directly with the CE; all currently 
use the same pilot model.  Other important examples include PanDA and DIRAC.



WORKFLOWS

• Once we have a pool of compute resources, we divide the 
work into a series of workflows.

• Typically, each workflow works on an input dataset, requires 
some physics configuration file, and has an output dataset.

• Workflows are often grouped into “campaigns”.  “Process 
all 2016 detector data using CMSSW_8_0_20 with the 
new conditions.”



WORKFLOWS
• Processing a dataset requires the workflow broken down into a series of 

jobs.  I.e., Job XYZ will process events 1000-2000.

• When the job is materialized - and whether it is static or dynamic - 
greatly differs by experiment.

• Often, there are only loose dependencies between jobs (if any at all).  
Dependencies are often not staticky defined: a “merge job” may be 
created once there is 2GB of unmerged output available.

• I can think of only one example (Lobster) where a non-HEP-specific 
workflow manager was used for a HEP workflow.



PORTABILITY
• Once upon a time, the LHC experiments could only run jobs at LHC sites: LHC jobs needed LHC-specific services, 

LHC-specific storage systems, and extremely-large, finicky software stacks.

• This implied LHC-specific sysadmins!  You don’t want to be the site paying $100k/yr to the sysadmin for $50k 
of hardware.

• Over the past 3-5 years, great strides were made to simplify operations:

• CVMFS (discussed elsewhere) provides a mechanism to easily distribute software.

• LHC-specific features were removed from storage systems.  Currently,  we can run on top of a generic 
shared POSIX-like filesystem.

• The event data was made more portable with remote streaming (more later).

• LHC-specific data services were either eliminated, centralized, or made generic (i.e., HTTP proxy server). 

• Today, our site requirements are basically RHEL6, robust outgoing network connection, HTTP 
proxy, and CVMFS.



DATA MANAGEMENT
• HEP experiments have a huge bookkeeping problem:

• A dataset is a logical group of events, typically defined by their physics 
content.  Commonly stored as files in a filesystem.

• We have thousands of new datasets per year, each with 10’s to 
10,000’s of files.

• CMS manages O(50PB) of disk space across O(50) sites.

• Most experiments develop a bookkeeping system to define the file<-
>dataset mapping and hold metadata; a location service to determine 
where files are currently placed; and a placement service to determine 
what movement needs to occur.

• Surprisingly, most use a common transfer service (FTS) to 
execute the decisions of the placement service.

• The past is littered with the bodies of “generic” bookkeeping, location, 
and placement services: it seems the requirements depend heavily on 
the experiment’s computing model.

Storage
Element A

Storage
Element B

Other SRM GFTP GFTP SRM Other

Transfer 
Management

VO A
Data 

Management

VO B
Data 

Management



DATA PORTABILITY
• About 5 years ago, the only way to read a single event was 

submit a job to the datacenter holding the file (and wait in 
line!).

• We have been heavily investing into remote streaming from 
storage to the end-application.

• Using “data federations” to hide many storage services 
behind a single endpoint.

• Altering the application to be less sensitive to latency.

• Originally, used for preventing application failures and user 
usability improvement.

• It’s become critical for previously-impossible use cases.

• Allows for processing-only sites.

Host A Host B Host C

Site 
 Redirector

Xrootd Xrootd Xrootd

Disk Array Disk Array Disk Array

User 
Application Q: Open /store/foo

A: Check Host A

Q: Open /store/foo
A: Success!

Cmsd Cmsd Cmsd

Xrootd Cmsd



CHALLENGES FOR HEP



FASTER, BETTER, CHEAPER
• In the short term, the LHC is 

taking much more data than 
expected.

• In the long term (10 years), the 
LHC’s CPU requirements are 60x 
today’s.

• Moore’s Law will likely take care of 
the first 10x.

• Prognosis for a 6x budget 
increase … not good.

(Pick Three)



THE RETURN OF 
HETEROGENEITY

• In the Bad Old Days, there was practically a 
different processor architecture for each 
cluster.

• This may occur again if GPUs and PowerPC 
or ARM become way more popular.

• More likely: the base ISA is x86, but 
performance differs by 4x depending 
on available extensions.

• What workflow, compiler, and software 
design issues occur when you have to tune 
for both Intel Atom and KNL?



THE OTHER KIND OF 
HETEROGENEITY

• The Grid has a huge variation in hardware but a strong source of homogeneity: admins paid to do HEP 
and a belief in DHTC.

• To meet future resource needs, working to incorporate other economic models (besides buying 
clusters):

• Cloud resources: infinite-ish elasticity but high-cost.

• Supercomputer allocations: “cheaper”, lots of CPU for peak processing.  Optimized for a different IO 
profile, inflexible environments, organizationally not used to serving a global community.

• Technical issues abound!  How do you integrate 100,000 cores with relatively poor network 
connectivity and no CVMFS?  How do you work with an organization with little history in automating 
workflows?

• Non-technical issues abound: experiments plan at the 2-10 year timescale.  Allocations 
occur yearly.



DID I MENTION PORTABILITY?
• As the LHC experiments get closer to resource starvation (hungrier!), there is an 

increased interest in portability:

• OSG is investigating adoption of Singularity; would allow experiments to “pick their 
OS” environment.

• CVMFS is taking several parallel strategies to function at HPC sites.

• Caching is an increasingly common strategy for data access for latency sensitive 
workflows - and continued work to make more workflows latency-friendly (enables 
remote streaming).

• Access site computing resources via “just SSH”: no CE needed.

• What else can we do to lower the bar for sites?



JOBS ARE NOT THE BEST 
ABSTRACTION

• How many events should go into a job?

• There is likely 100x difference in processing power between our largest HTCondor worker nodes 
(Intel KNL with 256 threads) and smallest (BOINC volunteer laptop).  A 2-hour job (too short) on 
the KNL is more than a week (too long) on the laptop.

• We may not know how much time we have on the resource: little-or-no warning before 
preemption.

• We don’t always have a reliable estimate of job length.

• All of the above issues get worse every year.

• Several community projects (notably, PanDA’s JEDI and ATLAS’s EventService) to allow jobs be 
dynamically defined and change during runtime.

• Eventually, becomes an immense bookkeeping exercise.



STORAGE IS EXPENSIVE
• The “storage element paradigm” results in a mess.  We assume (incorrectly):

• The experiment can keep track of the data it wrote to the SE.

• The SE is available and functioning.  The sysadmin responds to tickets and 
understands what the VO is asking.

• Files, once written, are neither deleted nor corrupted.

• Not to mention, running large robust shared filesystems remain a dark art!  This 
motivates a lot of interest in caching in our field.

• The SE is overkill for most of our workflows.  Setting aside user interaction, the 
semantics needed are much closer to an object store.  Could we take advantage of this?

Running it is even more expensive



PARTING SHOTS
• My goal today was to share (a) why HEP has significant 

computing needs, (b) how we currently solve the problem, and 
(c) some outstanding problems you might be interested in 
tackling.

• HEP is a field with a long history of computing.  This is a curse 
and a blessing as we look to our next set of scaling challenges.

• I think both sides benefit when HEP adopts outside technologies 
rather than “build our own.”  See HTCondor as a great example.



QUESTIONS?
COMMENTS? 
HECKLING?


