
Resource Management
with

 Makeflow & Work Queue

Ben Tovar
University of Notre Dame

btovar@nd.edu

Resources Makeflow and WQ care about

cores

memory

disk

Resources contract

Worker has
available:

i cores
j MB of memory
k MB of disk

Task needs:

m cores
n MB of memory
o MB of disk

Task runs only if it fits in the currently
available worker resources.

Resources contract example

Worker has
available:

8 cores
512 MB of memory
512 MB of disk

Task a:

4 cores
100 MB of memory
100 MB of disk

Tasks a and b may run in worker at the same time.
(Work could still run another 1 core task.)

Task b:

3 cores
100 MB of memory
100 MB of disk

Beware!
Tasks use all worker on missing declarations

Worker has
available:

8 cores
512 MB of memory
500 TB of disk

Task a:

4 cores
100 MB of memory

Tasks a and b may NOT run in worker at the same time.
(disk resource is not specified.)

Task b:

3 cores
100 MB of memory

Resource Management Levels

Do nothing (default):
One task per worker, task occupies the whole worker.

Honor contract:
Both worker and task declare resources (cores, memory, disk).
Worker runs as many concurrent tasks as they fit.
Tasks may use more resources than declared.

Monitoring and Enforcement:
Tasks fail (permanently) if they go above the resources declared.

Automatic resource labeling:
Tasks are retried with resources that maximize throughput, or minimize waste.

Declaring resources: worker

By default, a worker declares:

1 core

All physical memory (RAM)

All free disk

Declaring resources: worker

% work_queue_worker ... --cores 4 ...
% sge_submit_workers ... --memory 1024 ...
% work_queue_factory ... --cores all --disk 20000

--cores=# of cores
--memory=MB of RAM

--disk=MB of disk

Declaring resources: worker

% export CORES=8
% export MEMORY=1024
% export DISK=20000
%
% work_queue_worker ...
% sge_submit_workers ...
% work_queue_factory ...

Declaring resources: tasks

Tasks are grouped into categories.

All tasks in a category have identical resource requirements.

Unless specified otherwise, all tasks belong to the "default"
category.

my_category

Categories

Task a:

4 cores
100 MB of memory
100 MB of disk

Task b:

4 cores
100 MB of memory
100 MB of disk

my_other_category

Task c:

1 cores
200 MB of memory
512 MB of disk

Declaring resources (Makeflow)

Makeflow file
Resources for "default" category
.MAKEFLOW CORES 4
.MAKEFLOW MEMORY 1024
.MAKEFLOW DISK 1024

all rules run with 4 cores, 1024 MB RAM, etc.
output_a: input_a

cmd < input_a > output_a

output_b: input_b
cmd < input_b > output_b

Makeflow file

.MAKEFLOW CATEGORY MY_FIRST_CATEGORY

.MAKEFLOW CORES 1

.MAKEFLOW MEMORY 1024

.MAKEFLOW DISK 1024

.MAKEFLOW CATEGORY MY_SECOND_CATEGORY

.MAKEFLOW CORES 2

.MAKEFLOW MEMORY 2048

.MAKEFLOW DISK 4096

.MAKEFLOW CATEGORY MY_FIRST_CATEGORY
output_a: input_a

cmd < input_a > output_a

output_b: input_b
cmd < input_b > output_b

.MAKEFLOW CATEGORY MY_SECOND_CATEGORY
output_c: input_c

cmd < input_c > output_c

Categories group tasks
with the identical
resource requirements.

Resource declarations are
assigned to the latest
CATEGORY=...

These tasks belong to
MY_FIRST_CATEGORY

This task belongs to
MY_SECOND_CATEGORY

Example

% makeflow -Twq Makeflow

% # launch a worker
% work_queue_worker HOST PORT --cores 1

% # launch a bigger worker
% work_queue_worker HOST PORT --cores 2

work_queue_status -A HOST PORT
information about waiting tasks and resources

CATEGORY RUNNING WAITING FIT-WORKERS MAX-CORES MAX-MEM MAX-DISK
my-cat-a 2 20 2 1 ~1024 ~2000

Number of workers able
to eventually run a task
in the category

~ No hard limit set, but all
the tasks have run at most
with these resource usage.

Declaring resources (Work Queue)

q = WorkQueue(port)

q.specify_category_max_resources('my_category', {
'cores' : 1,
'memory': 1024,
'disk' : 1014

})

t = Task(cmd)
t.specify_category('my_category')

Resource Measure and Enforcement

% makeflow -Twq --monitor=my_dir Makeflow

% # one resource summary per rule:
% cat mydir/resource-rule-2.summary

Task finished in the
allotted resources.

Task exhausted its
resources.

Monitor and Enforcement with Work Queue

q = WorkQueue(port)
q.enable_monitoring('my_summaries_dir')

t = q.wait(timeout)

t.resources_allocated.cores #.memory, .disk,
etc.
t.resources_measured.memory

resources exhausted, if any.
if t.limits_exceeded:
 t.limits_exceeded.wall_time

Other resources measured

work_queue_status -A HOST PORT
information about waiting tasks and resources

CATEGORY RUNNING WAITING FIT-WORKERS MAX-CORES MAX-MEM MAX-DISK
my-cat-a 2 20 2 1 ~1024 ~2000
my-cat-b 0 15 0 1 >3000 ~1000
my-cat-c 0 0 0 ??? ??? ???

> At least one task that is
now waiting, failed exhausting
these much of the resource.

No info on
tasks waiting.

Tasks with Unknown Resource Requirements

Tasks which size
(e.g., cores, memory, and disk)

is not known until runtime.

workers

One task per worker:
Wasted resources, reduced throughput.

Many tasks per worker:
Resource contention/exhaustion, reduce
throughput

Tasks with Unknown Resource Requirements

Tasks which size
(e.g., cores, memory, and disk)

is not known until runtime.

workers

1. Run some tasks using full workers.
2. Collect statistics.
3. Guess task sizes to maximize throughput, or minimize waste.

a. Run task using guessed size.
b. If task exhausts guessed size, keep retrying on full (bigger) workers.

4. When statistics become out-of-date, go to 1.

ND CMS example

Real result from a production High-Energy Physics CMS analysis
(Lobster NDCMS)

Histogram Peak Memory vs Number of Tasks
O(700K) tasks that ran in O(26K) cores managed by WorkQueue/Condor.

First-allocation that maximizes expected
throughput

(increase of %40 w.r.t. no task is retried)

Automatic Resource Labeling
Makeflow file

.MAKEFLOW CATEGORY MY_FIRST_CATEGORY

.MAKEFLOW MODE MAX_THROUGHPUT

.MAKEFLOW CATEGORY MY_SECOND_CATEGORY

.MAKEFLOW MODE MIN_WASTE

.MAKEFLOW CATEGORY MY_OTHER_CATEGORY

.MAKEFLOW MODE FIXED

.MAKEFLOW CATEGORY MY_FIRST_CATEGORY
output_a: input_a

cmd < input_a > output_a

.MAKEFLOW CATEGORY MY_SECOND_CATEGORY
output_b: input_b

cmd < input_b > output_b

.MAKEFLOW CATEGORY MY_OTHER_CATEGORY
output_c: input_c

cmd < input_c > output_c

% makeflow --monitor=my_dir --retry-count=5

Automatic Resource Labels with Work Queue
q.enable_monitoring('my_summaries_dir')

q.specify_category_mode('my_cat_a',
WORK_QUEUE_ALLOCATION_MODE_MAX_THROUGHPUT)

q.specify_category_mode('my_cat_b',
WORK_QUEUE_ALLOCATION_MODE_MIN_WASTE)

q.specify_category_mode('my_cat_c',
WORK_QUEUE_ALLOCATION_MODE_FIXED)

recommended. contains history of allocations
q.specify_transactions_log('transactions.log')

setting some maximum # retries is recommended
t.specify_max_retries(5)

Questions?

Acknowledgements:

Many thanks to ND CMS group:

Prof. Kevin Lannon
Anna Woodard
Mathias Wolf
Kenyi Hurtado

btovar@nd.edu

http://ccl.cse.nd.edu/community/forum

http://ccl.cse.nd.edu/workshop/2016

extra slides

Stand-alone monitor

resource_monitor -L"cores: 4" -L"memory: 4096" -- matlab

(does not work as well on static executables that fork)

Stand-alone monitor -- time series

% resource_monitor -Ooutput --with-time-series -- matlab

% tail -f output.series

(does not work as well on static executables that fork)

Tasks with Unknown Resource Requirements

Tasks which size
(e.g., cores, memory, and disk)

is not known until runtime.

Available workers

One task per worker:
Wasted resources, reduced throughput.

Many tasks per worker:
Resource contention/exhaustion, reduce
throughput

Task-in-the-Box

workers

Task-in-the-Box

Workers

Allocations
inside a worker

Task-in-the-Box

workers

One task per
allocation

One task per
allocation

Task-in-the-Box

workers

Task exhausted
its allocation

One task per
allocation

Task-in-the-Box

workers

Retry allocating a
whole worker

One task per
allocation

Main Challenge

What is a good allocation size?

Slow-peaks model

Random variables to
describe usage:
Time to completion.
Size of max peak

Resource usage:
time x peak

Slow-peaks:
Resource peaks at
the end of execution
(conservative
assumption)

Slow-peaks model

Choice of:
maximum throughput
minimum waste.

Optimizations over expectations

O(n) simple arithmetic expressions that
use only information available during
execution.

