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Reproducible	Accuracy	

•  From	Van	Nostrand’s	ScienDfic	Encyclopedia		
	Reproducibility:	“closeness	of	agreement	among	repeated	
	simulaDon	results	under	the	same	iniDal	condiDons	over	
	Dme”	
	Accuracy:	“conformity	of	a	resulted	value	to	an	accepted	
	standard	(or	scienDfic	laws)”	

•  Context:	ensemble	simulaDons	of	scienDfic	phenomena	at	
extreme	scale	with	mulDthreading	hardware	consisDng	of	
mulD-core	processors	coupled	with	many-core	accelerators	
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•  Repeatability	(Same	team,	same	experimental	setup)	
▪  The	measurement	can	be	obtained	with	stated	precision	by	the	same	team	

using	the	same	measurement	procedure,	the	same	measuring	system,	under	
the	same	operaDng	condiDons,	in	the	same	locaDon	on	mulDple	trials.	For	
computaDonal	experiments,	this	means	that	a	researcher	can	reliably	repeat	
her	own	computaDon.	

•  Replicability	(Different	team,	same	experimental	setup)	
▪  The	measurement	can	be	obtained	with	stated	precision	by	a	different	team	

using	the	same	measurement	procedure,	the	same	measuring	system,	under	
the	same	operaDng	condiDons,	in	the	same	or	a	different	locaDon	on	mulDple	
trials.	For	computaDonal	experiments,	this	means	that	an	independent	group	
can	obtain	the	same	result	using	the	author’s	own	arDfacts.	

•  Reproducibility	(Different	team,	different	experimental	setup)	
▪  The	measurement	can	be	obtained	with	stated	precision	by	a	different	team,	a	

different	measuring	system,	in	a	different	locaDon	on	mulDple	trials.	For	
computaDonal	experiments,	this	means	that	an	independent	group	can	obtain	
the	same	result	using	arDfacts	which	they	develop	completely	independently.	

3
From:	hQps://www.acm.org/publicaDons/policies/arDfact-review-badging	



Molecular	Dynamics	on	Accelerators	

Force	à	AcceleraDon	à		
																Velocity									à	PosiDon	

MD simulation step:
•  Each GPU-thread computes 

forces on single atoms
▪ E.g., bond, angle, dihedrals 

and, nonbond forces
•  Forces are added to compute 

acceleration
•  Acceleration is used to update 

velocities 
•  Velocities are used to update the 

positions
4



The	Strange	Case	of	Constant	Energy	MDs	

----- Single precision

•  Enhancing	performance	of	MD	simulaDons	allows	simulaDons	of	
larger	Dme	scales	and	length	scales	

•  GPU	compuDng	enables	large-scale	MD	simulaDon	
▪  SimulaDons	exhibit	unprecedented	speed-up	factors	

•  MD simulation of NaI solution 
system containing 988 waters, 18 
Na+, and 18 I−: GPU is X15 faster 
than CPU

Constant energy MD simulation 
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The	Strange	Case	of	Constant	Energy	MDs	

----- Single precision

•  Enhancing	performance	of	MD	simulaDons	allows	simulaDons	of	
larger	Dme	scales	and	length	scales	

•  GPU	compuDng	enables	large-scale	MD	simulaDon	
▪  SimulaDons	exhibit	speed-up	factors	of	X10-X30		

•  MD simulation of NaI solution 
system containing 988 waters, 18 
Na+, and 18 I−: GPU is X15 faster 
than CPU

Constant energy MD simulation 
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The	Strange	Case	of	Constant	Energy	MDs	

----- Single precision

•  Enhancing	performance	of	MD	simulaDons	allows	simulaDons	of	
larger	Dme	scales	and	length	scales	

•  GPU	compuDng	enables	large-scale	MD	simulaDon	
▪  SimulaDons	exhibit	unprecedented	speed-up	factors	

•  MD simulation of NaI solution 
system containing 988 waters, 18 
Na+, and 18 I−: GPU is X15 faster 
than CPU

GPU single precision  
GPU single precision 
GPU double precision 
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The	Strange	Case	of	Constant	Energy	MDs	
•  Enhancing	performance	of	MD	simulaDons	allows	simulaDons	of	

larger	Dme	scales	and	length	scales	
•  GPU	compuDng	enables	large-scale	MD	simulaDon	

▪  SimulaDons	exhibit	unprecedented	speed-up	factors	

•  MD simulation of NaI solution 
system containing 988 waters, 18 
Na+, and 18 I−: GPU is X15 faster 
than CPU

GPU double precision 
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Just	a	Case	of	Code	
Accuracy?	

•  A	plot	of	the	energy	
fluctua@ons	versus	@me	step	
size	should	follow	an	
approximately	logarithmic	
trend	1	

•  Energy	fluctuaDons	are	
proporDonal	to	Dme	step	size	
for	large	Dme	step	size	
•  Larger	than	0.5	fs	

•  A	different	behavior	for	step	
size	less	than	0.5	fs	is	consistent	
with	results	previously	
presented	and	discussed	in	
other	work	2	

1 Allen and Tildesley, Oxford: Clarendon Press, (1987) 
2 Bauer et al., J. Comput. Chem. 32(3): 375 – 385, 2011 9



From a recent talk of Lucy Nowell, DoE Program Director	
(Distinguished Speaker Lecture, University of Delaware, Oct 10, 2014) 

The	Exascale	Environment	
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The	Exascale	Environment	

From a recent talk of Lucy Nowell, DoE Program Director	
(Distinguished Speaker Lecture, University of Delaware, Oct 10, 2014) 11



Discussion	Outline	

•  Focus	on	reproducible	accuracy	of	global	summa@on	
•  ScienDsts	demand	increased	reproducible	accuracy		
▪  Must	be	reproducible	enough	

•  Many	approaches	have	been	proposed	
▪  Must	be	cost	effec@ve	

•  Empirical	results	illustrate	the	need	for	runDme	selecDon	of	
reducDon	operators	that	ensure	a	given	degree	of	
reproducible	accuracy	
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	Discussion	Outline	

•  Causes	of	loss	of	reproducibility	
▪  Well-known	floaDng-point	issues	
▪  Non-determinism	at	exascale	

•  Techniques	for	recovering	reproducibility	
▪  Enhanced	summaDon	algorithms	

•  Empirical	evaluaDon	of	summaDon	algorithms’	cost	
•  QuanDfying	reproducible	accuracy		
▪  IdenDfy	key	factors	in	variability	of	error	accumulaDon	
▪  Study	response	of	summaDon	algorithms	to	those	factors	

•  Lesson	learned	
13



Well-Known	Problem	
•  The	modeling	of	finite-precision	arithme@c	maps	an	infinite	set	of	real	

numbers	onto	a	finite	set	of	machine	numbers	

http://cs.smith.edu/dftwiki/index.php/CSC231 An Introduction to Fixed- and 
Floating-Point Numbers 14



Simple	Example	

a = 10

9
, b = �10

9
, c = 10

�9

Summation order 1

(a+ b) + c = (10

9 � 10

9
) + 10

�9
= 10

�9

Summation order 2

a+ (b+ c) = 10

9
+ (�10

9
+ 10

�9
) = 0

1
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Non-Determinism	at	Extreme	Scale	
ReducDon	tree	shape	

17
Causes	include:	dynamic	task	scheduling	and	fault	recovery	
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Non-Determinism	at	Extreme	Scale	
Arrangement	of	operands	
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Causes	include:	dynamic	task	scheduling	and	fault	recovery	
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Number	of	Operands	
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•  No	control	on	the	way	N	floaDng-point	numbers	are	assigned	to	N	threads		

19

•  Different thread orders cause 
round-off errors to accumulate 
in different ways, leading to 
different summation results

x0	x1	x2	x3	x4	x5	x6	x7	x8	x9	x10	x11	x12	x13	x14	x15	
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Non-AssociaDvity	+	Non-Determinism	



Non-AssociaDvity	+	Non-Determinism	
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Non-AssociaDvity	+	Non-Determinism	
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Non-AssociaDvity	+	Non-Determinism	
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Non-AssociaDvity	+	Non-Determinism	

23
Number	of	Operands	

Er
ro
r	M

ag
ni
tu
de

	

Increasing	concurrency	
==	

Widening	interval	of	possible	sums	



	Inadequacy	of		ConvenDonal		Wisdom	

Worst case  
error bound

•  In	pracDce	error	bounds	are	overly	pessimisDc	(i.e.,	usually	N	
*	ε			<<	1)	and	thus	unreliable	predictors	

24



Techniques	for	Recovering	Reproducibility		

•  Fixed	reducDon	order	
▪  Ensuring	that	all	floaDng-point	operaDons	are	evaluated	in	the	

same	order	from	run	to	run	
•  Increased	precision	numerical	types	

▪  Mixed	precision	-	e.g.	use	higher-precision	types	for	sensiDve	
computaDons	and	standard	types	for	less	sensiDve	computaDons	

•  Interval	arithmeDc	
▪  Replace	floaDng-point	types	with	custom	types	represenDng	

finite-length	intervals	of	real	numbers	
•  Enhanced	SummaDon	Algorithms	

▪  Compensated	summaDon	e.g.,	Kahan	and	composite	precision	
▪  Pre-rounded	reproducible	summaDon	
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Techniques	for	Recovering	Reproducibility	

•  Fixed	reducDon	order	
▪  Ensuring	that	all	floaDng-point	operaDons	are	evaluated	in	the	

same	order	from	run	to	run	
•  Increased	precision	numerical	types	
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Techniques	for	Recovering	Reproducibility	

•  Fixed	reducDon	order	
▪  Ensuring	that	all	floaDng-point	operaDons	are	evaluated	in	the	same	

order	from	run	to	run	
•  Increased	precision	numerical	types	

▪  Mixed	precision	-	e.g.	use	higher	precision	types	for	sensiDve	
computaDons	and	standard	types	for	less	sensiDve	computaDons	

•  Interval	arithmeDc	
▪  Replace	floaDng-point	types	with	custom	types	represenDng		

finite-length	intervals	of	real	numbers	
•  Enhanced	summaDon	algorithms	

▪  Compensated	summaDon	e.g.,	Kahan	and	composite	precision	
▪  Pre-rounded	reproducible	summaDon	
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Standard	SummaDon:	DefiniDon	

28



Kahan	SummaDon:	DefiniDon	

Holds	error		

Capture error & add to operand
on next iteration

Kahan “Further Remarks on Reducing 
Truncation Errors” (1964) 29



Composite	Precision:	DefiniDon	

Taufer et al.” Improving Numerical Reproducibility and Stability 
in Large-Scale Numerical Simulations on GPUs”  (2010)

Value or result 
Error approximation

Error carried  
through each  
operation

30



Pre-rounded	SummaDon:	DefiniDon		

31

Demmel and Nguyen “Parallel 
Reproducible Summation” (2014)

Arteaga, Hoefler et al. “Designing Bit-Reproducible 
Portable High-Performance Applications” (2014) 31

		select	extractor	M	

v1 + v2:  

		q1	+	q2	

		q1	=		(v1	+	M)	–	M	
		q2	=		(v2	+	M)	–	M	

		r1	=		v1	–	q1	
		r2	=		v2	–	q2	

Un@l	error	<	threshold	



Techniques	for	Reproducible	SummaDon	

•  Fixed	reducDon	order	
▪  Ensuring	that	all	floaDng-point	operaDons	are	evaluated	in	the	

same	order	from	run	to	run	
•  Increased	precision	numerical	types	

▪  Mixed	precision	-	e.g.	use	of	doubles	for	sensiDve	computaDons	
and	floats	everywhere	else	

•  Interval	arithmeDc	
▪  Replace	floaDng-point	types	with	custom	types	represenDng	finite-

length	intervals	of	real	numbers	
•  Enhanced	summaDon	algorithms	

▪  Compensated	summaDon	e.g.,	Kahn	and	composite	precision	
▪  Pre-rounded	reproducible	summaDon	HOW	COSTLY?	

32



Empirical	Study:	Cost	

•  Emulate	simulaDon	execuDon		
▪  Run	parallel	sum	of	1M	doubles	using	MPI	
▪  Perform	parDal	sums	independently		
▪  Reduce	by	global	sum	with	MPI_REDUCE	

•  SummaDon	algorithms	tested	
▪  Standard	(ST)	
▪  Kahan	(K)	
▪  Composite	Precision	(CP)	
▪  Pre-rounded	(PR)	

33



34

Empirical	Study:	Cost	



Error-free	TransformaDons:	Times	
•  2-fold pre-rounding versions and varying vector sizes

 Demmel and  Nguyen “Parallel Reproducible Summation” (2013)

Intel MKL library

~X7	

~X4	

35



Techniques	for	Reproducible	SummaDon	

•  Fixed	reducDon	order	
▪  Ensuring	that	all	floaDng-point	operaDons	are	evaluated	in	the	

same	order	from	run	to	run	
•  Increased	precision	numerical	types	

▪  Mixed	precision	-	e.g.	use	of	doubles	for	sensiDve	computaDons	
and	floats	everywhere	else	

•  Interval	arithmeDc	
▪  Replace	floaDng-point	types	with	custom	types	represenDng	finite-

length	intervals	of	real	numbers	
•  Enhanced	summaDon	algorithms	

▪  Compensated	summaDon	e.g.,	Kahn	and	composite	precision	
▪  Pre-rounded	reproducible	summaDon	

How	reprodu
cible?	

How	accurat
e?	
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Empirical	Study:	Reproducible	Accuracy	

•  Emulate	sums	expected	in	exascale	simulaDons	
▪  Shuffling	summaDon	order	emulates	nondeterminisDc	

reducDon	tree	
•  Measure	sensiDvity	of	summaDon	algorithms	to:	
▪  Changes	in	summaDon	order	
▪  MathemaDcal	properDes	of	summands	
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Empirical	Study:	Reproducible	Accuracy	

•  Emulate	sums	expected	in	exascale	simulaDons	
▪  Shuffling	summaDon	order	emulates	nondeterminisDc	

reducDon	tree	
•  Measure	sensiDvity	of	summaDon	algorithms	to:	
▪  Changes	in	summaDon	order	
▪  MathemaDcal	properDes	of	summands	

•  Interpret	width	of	result	interval	as	sensiDvity	
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Empirical	Study:	Reproducible	Accuracy	

•  Emulate	sums	expected	in	exascale	simulaDons	
▪  Shuffling	summaDon	order	emulates	nondeterminisDc	

reducDon	tree	
•  Measure	sensiDvity	of	summaDon	algorithms	to:	
▪  Changes	in	summaDon	order	
▪  MathemaDcal	properDes	of	summands	

•  Interpret	width	of	result	interval	as	sensiDvity	
•  Test	summaDon	algorithms:	Standard	(ST),	Kahan	(K),	

Composite-Precision	(CP),	Pre-rounded	(PR)	
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EmulaDng	Exascale	Scenarios	

40

0	
Real	Numbers	

FloaDng-point		
Numbers	

f(x0)	

x0	
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x1	

f(x2)	

x2	

f(x3)	

x3	
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x5	

s0	s2	s3	s1	 s4	

Roundoff	errors	
accumulate	

Non-determinism	at	exascale	
==	

shuffled	summaDon	order	

{sj	==	sum	wrt	jth	summaDon	order}		

{sj}	



EmulaDng	Exascale	Scenarios	

41

0	
Real	Numbers	

FloaDng-point		
Numbers	

f(x0)	

x0	

f(x4)	

x4	

f(x1)	

x1	

f(x2)	

x2	

f(x3)	

x3	

f(x5)	

x5	

s0	s2	s3	s1	 s4	

Roundoff	errors	
accumulate	

Non-determinism	at	exascale	
==	

shuffled	summaDon	order	

{sj	==	sum	wrt	jth	summaDon	order}		
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width of interval 
∝

irreproducibility



Characterizing	Sets	of	Summands	
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Characterizing	Sets	of	Summands	
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CriDcal	Parameters	
•  Size:	n		
•  CondiDon	number:	k	
•  Dynamic	range:	dr	
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Taxonomy	of	Values	
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Taxonomy	of	Values	
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Characterizing	Sets	of	Summands	

CriDcal	Parameters	
•  Size:	n	
•  CondiDon	number:	k	
•  Dynamic	range:	dr	
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Proxy	for…	
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Empirical	Study:	Results	

•  Varying	the	shape	of	the	reducDon	tree	
▪  Ill-condiDoned,	high	dynamic	range	values	
▪  Balanced	vs.	unbalanced	reducDon	trees	

•  Error	variability	within	the	parameter	space	
▪  n	vs.	k	
▪  n	vs.	dr	
▪  k	vs.	dr	

•  SummaDon	algorithm	selecDon		
▪  Given	a	variability	threshold,	which	algorithm	is	needed	

47



Empirical	Studies	of	Reproducible	Accuracy	

•  Varying	the	shape	of	the	reducDon	tree	
▪  Ill-condiDoned,	high	dynamic	range	values	
▪  Balanced	vs.	unbalanced	reducDon	trees	

•  Error	variability	within	the	parameter	space	
▪  n	vs.	k	
▪  n	vs.	dr	
▪  k	vs.	dr	

•  SummaDon	algorithm	selecDon		
▪  Given	a	variability	threshold,	which	algorithm	is	needed	
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Visualizing	Degree	of	Reproducible	Accuracy	

k

dr

{x1, x2, …. xn}

Sσ =      xσ(i)  σ – perm. of [n]  

{Sσ_1 ,Sσ_2 ,Sσ_3 ….. Sσ_100 } 

{εσ_1 ,	εσ_2 ,	εσ_3 ….. εσ_100 } 

	error	variability			

Values

Sum of 	
shuffled values

Multiple sums 	
of multiple 	
permutations
Errors w/r/t	
GNU MPFR  
result
Error 	
variability

…..	
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Darker == More Variability



CondiDon	Number	vs.	Dynamic	Range	
Parameter	ranges:	N	=	106,	k	∈	[1,	106],	dr	∈	[0,	32]		

CP	
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Compensated	summaDon	incrementally	improves		
reproducible	accuracy	

x1e-13	0								1								2							3								4								5								6								7								8								9	
Standard	DeviaDon	

Dynamic	Range	(dr)	 Cell	variability	

ST	 K	



Empirical	Studies	of	Reproducible	Accuracy	

•  Varying	the	shape	of	the	reducDon	tree	
▪  Ill-condiDoned,	high	dynamic	range	values	
▪  Balanced	vs.	unbalanced	reducDon	trees	

•  Error	variability	within	the	parameter	space	
▪  n	vs.	k	
▪  n	vs.	dr	
▪  k	vs.	dr	

•  SummaDon	algorithm	selecDon		
▪  Given	a	variability	threshold,	which	algorithm	is	needed?	
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k

dr

{x1, x2, …. xn}

Sσ =      xσ(i)  σ – perm. of [n]  

{Sσ_1 ,Sσ_2 ,Sσ_3 ….. Sσ_100 } 

{εσ_1 ,	εσ_2 ,	εσ_3 ….. εσ_100 } 

	error	variability			

Values

Sum of 	
shuffled values

Multiple sums 	
of multiple 	
permutations
Errors w/r/t	
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result
Error 	
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…..	
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Cell shade == algorithm keeps variability below threshold

K	ST	 CP	



SelecDng	a	Sufficient	Algorithm		

High	

Medium	

K	ST	 CP	

Low	 53

Variability	threshold	=	5e-13	



SelecDng	a	Sufficient	Algorithm		
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Medium	
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Low	 54

Variability	threshold	=	4.5e-13		



SelecDng	a	Sufficient	Algorithm		
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Variability	threshold	=	4e-13		



SelecDng	a	Sufficient	Algorithm		
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Variability	threshold	=	3.5e-13		



SelecDng	a	Sufficient	Algorithm		
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Variability	threshold	=	3e-13	



SelecDng	a	Sufficient	Algorithm		
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Variability	threshold	=	2.5e-13	



SelecDng	a	Sufficient	Algorithm		
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Variability	threshold	=	1.5e-13	



SelecDng	a	Sufficient	Algorithm		
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Lesson	Learned	
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•  We	study	an	emulated	scenario	of	global	summaDon	on	
exascale	pla~orms	

•  Increasingly	costly	summaDon	algorithms	needed	for	
reproducible	accuracy	in	certain	regions	of	parameter	space	
▪  High	concurrency,	ill-condiDoned,	high	dynamic	range	

•  Exascale	applicaDons	need	to	maintain	awareness	of	
mathemaDcal	properDes	of	summands	
▪  Adjust	summaDon	algorithms	used	to	keep	variability	

below	threshold	
	



Future	DirecDons	

•  Can	we	achieve	reproducible	numerical	accuracy	by	
intelligent	run7me	selec7on	of	reduc7on	algorithms?	
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