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Reproducible Accuracy

* From Van Nostrand’s Scientific Encyclopedia
Reproducibility: “closeness of agreement among repeated

simulation results under the same initial conditions over
time”
Accuracy: “conformity of a resulted value to an accepted
standard (or scientific laws)”

* Context: ensemble simulations of scientific phenomena at

extreme scale with multithreading hardware consisting of
multi-core processors coupled with many-core accelerators
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Repeatability (Same team, same experimental setup)

The measurement can be obtained with stated precision by the same team
using the same measurement procedure, the same measuring system, under
the same operating conditions, in the same location on multiple trials. For

computational experiments, this means that a researcher can reliably repeat
her own computation.

Replicability (Different team, same experimental setup)

The measurement can be obtained with stated precision by a different team
using the same measurement procedure, the same measuring system, under
the same operating conditions, in the same or a different location on multiple

trials. For computational experiments, this means that an independent group
can obtain the same result using the author’s own artifacts.

Reproducibility (Different team, different experimental setup)

The measurement can be obtained with stated precision by a different team, a
different measuring system, in a different location on multiple trials. For
computational experiments, this means that an independent group can obtain
the same result using artifacts which they develop completely independently.

From: https://www.acm.org/publications/policies/artifact-review-badging
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Molecular Dynamics on Accelerators

s
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¥

MD simulation step:

* Each GPU-thread computes
forces on single atoms

= F.g., bond, angle, dihedrals
and, nonbond forces

* Forces are added to compute
acceleration

* Acceleration is used to update

Force = Acceleration = velocities
Velocity = Position * Velocities are used to update the
positions

4
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The Strange Case of Constant Energy MDs

* Enhancing performance of MD simulations allows simulations of
larger time scales and length scales

®* GPU computing enables large-scale MD simulation
= Simulations exhibit unprecedented speed-up factors
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The Strange Case of Constant Energy MDs

* Enhancing performance of MD simulations allows simulations of
larger time scales and length scales

®* GPU computing enables large-scale MD simulation
= Simulations exhibit speed-up factors of X10-X30

MD simulation of Nal solution 8020 .@ t energy MD simulation
System Containing 988 waters, 18 L —.
Na+, and 18 I-: GPU is X15 faster |
g 8080 ko kT B
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The Strange Case of Constant Energy MDs

* Enhancing performance of MD simulations allows simulations of
larger time scales and length scales

®* GPU computing enables large-scale MD simulation
= Simulations exhibit unprecedented speed-up factors
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The Strange Case of Constant Energy MDs

* Enhancing performance of MD simulations allows simulations of
larger time scales and length scales

®* GPU computing enables large-scale MD simulation
= Simulations exhibit unprecedented speed-up factors

MD simulation of Nal solution 9000
system containing 988 waters, 18
Na+, and 18 I-: GPU is X15 faster

GPU double precision
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Just a Case of Code
Accuracy? ~
=
g 10
* A plot of the energy 3
fluctuations versus time step f 8-
size should follow an S
approximately logarithmic IE ©
trend? B
4
* Energy fluctuations are 5
proportional to time step size o] =
for large time step size | =
e Largerthan 0.5fs Oo 02 04 06 08 1 12 14 16 18 2
* A different behavior for step timestep (fs)
size less than 0.5 fs is consistent — FEN ZI single prec., cuton = 7, cutoff=8, cutnb=9.5
with results previously — FEN ZI double prec., cuton = 7, cutoff=8, cutnb=9.5

presented and discussed in

- FEN ZI single prec., cuton = 8, cutoff=9, cutnb=11
other work?

— FEN ZI double prec., cuton = 8, cutoff=9, cutnb=11

1 Allen and Tildesley, Oxford: Clarendon Press, (1987)
2 Bauer et al., J. Comput. Chem. 32(3): 375 — 385, 2011 CHARMM double prec., cuton = 8, cutoff=9, cutnb=14 g
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The Exascale Environment

2010 2018 Factor Change
System peak 2 Pf/s 1 Ef/s 500
Power 6 MW 20 MW 3
System Memory 0.3 PB 10 PB 33
Node Performance 0.125 Gt/s 10 Tf/s 80
Node Memory BW 25 GB/s 400 GB/s 16
Node Concurrency 12 cpus 1,000 cpus 83
Interconnect BW 1.5 GB/s 50 GB/s 33
System Size (nodes) 20 K nodes 1 M nodes 50
Total Concurrency 225K | B 4.444
Storage 15 PB 300 PB 20
Input/Output bandwidth 0.2 TB/s 20 TB/s 100

From a recent talk of Lucy Nowell, DoE Program Director

DOE Exascale Initiative Roadmap, Architecture and Technology Workshop, San Diego, December, 2009.

(Distinguished Speaker Lecture, University of Delaware, Oct 10, 2014)
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The Exascale Environment

2010 2018 Factor Change
System peak 2 Pf/s 1 Ef/s 500
Power 6 MW 20 MW 3
System Memory 0.3 PB 10 PB 33
Node Performance 0.125 Gt/s 10 Tt/s 80
Node Memory BW 25 GB/s 400 GB/s 16
Node Concurrency 12 cpus 1,000 cpus 83
Interconnect BW 1.5 GB/s 50 GB/s 33
_Systeny Size (oo 0 K nad A o A
Storage 15PB 300 PB 20
l Input/Output bandwidth 0.2 TB/s 20 TB/s 100

DOE Exascale Initiative Roadmap, Architecture and Technology Workshop, San Diego, December, 2009.
From a recent talk of Lucy Nowell, DoE Program Director
(Distinguished Speaker Lecture, University of Delaware, Oct 10, 2014) 11
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Discussion Outline

* Focus on reproducible accuracy of global summation
* Scientists demand increased reproducible accuracy

= Must be reproducible enough
* Many approaches have been proposed

= Must be cost effective

* Empirical results illustrate the need for runtime selection of
reduction operators that ensure a given degree of
reproducible accuracy

12



NIVERSITY ofDELAWARE

Discussion Outline

Causes of loss of reproducibility

= Well-known floating-point issues

= Non-determinism at exascale
Techniques for recovering reproducibility

= Enhanced summation algorithms
Empirical evaluation of summation algorithms’ cost
Quantifying reproducible accuracy

= |dentify key factors in variability of error accumulation

= Study response of summation algorithms to those factors
Lesson learned

13
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Well-Known Problem

The modeling of finite-precision arithmetic maps an infinite set of real
numbers onto a finite set of machine numbers

REAL NUMBERS

w5
O

—

FLOATING-POINT
NUMBERS

http://cs.smith.edu/dftwiki/index.php/CSC231 An Introduction to Fixed- and
Floating-Point Numbers
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Simple Example

a=102 b=-107 c=10""

Summation order 1
(a +b) +c= (10 — 10%) +10°

Summation order 2
a+ (b+c) =107 + (=107 +1077)

15
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Simple Example

a=102 b=-107 c=10""

Summation order 1

(@ +b) + cl= (107 — 10°) + 1072 =/10~°

Summation order 2
a+ (b+c¢)l=10° + (=10 +107?) =0

16
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Non-Determinism at Extreme Scale

Reduction tree shape

\/ \/ \/ \/ \\\\\
N

S
So \ Sy s, / S,

( 1 1 1 | M. ) ( 1 1 1 \
\ . — )/ \ 1 )/
/ AN / \
exact sum error bounds exact sum

Causes include: dynamic task scheduling and fault recovery
17
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Non-Determinism at Extreme Scale

Arrangement of operands

L2

\/ \/

S

S, \ S,
L]

I |

( | \
\ I ]
/ AN

exact sum error bounds exact sum

Causes include: dynamic task scheduling and fault recovery

18
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Non-Associativity + Non-Determinism

* No control on the way N floating-point numbers are assigned to N threads

n 1ple-14 ‘

Z . e—e min error
Li e—e avg error
i=1 °r

!

std of errors

°©
©
T

o
o
T

Error Magnitude

X0 X1 x2 X3 x4 x5 x6 X7 x8 x9 x10 x11 x12 x13 x14 x15

« Different thread orders cause T
round-off errors to accumulate
in different ways, leading to
different summation results

Number of Operands

19 49
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Non-Associativity + Non-Determinism

1.2 16—14 ; —
e—e min error o
e—e avg error
10- e—e max error
e—e std of errors
S
5 08t 4
o
c
(Y}
‘E" 0.6
| -
(@]
b
S5 04t

Lo LA -h.“t "JMA_,J} “g b

0.0 - " T—. - 2.0..0.08 |
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.2

e

Number of Operands
20
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Non-Associativity + Non-Determinism

1.21e—

e—e min error
e—e avg error

10- e—e max error

std of errors

Error Magnitude

> e

0.0
1000

2000 3000

4000 5000 6000 7000

Number of Operands

8000

L0 000
9000 10000

21
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Non-Associativity + Non-Determinism

1.2 16—14 ;

e—e min error
e—e avg error
1.0- e—e max error
e—e std of errors

0.8}

0.6 |

Error Magnitude

0.4+

0.2

0.0 AT
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Operands
22
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Non-Associativity + Non-Determinism

1ple-14 —
e—e min error
e—e avg error
1.0+ e—e max error
e—e std of errors
0.8} .
Increasing concurrency l’&

>er Widening interval of possible sums

"] { V| Y"

TR
%‘%4 3

0.0 - = =
1000 2000 3000 4000 5000 6000 7000 8000

Error Magnitude

0.4

i

"

9000 10000
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-t

Number of Operands
23
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Inadequacy of Conventional Wisdom

In practice error bounds are overly pessimistic (i.e., usually N
* £ <<1)and thus unreliable predictors

1200 ;
—— Analytical Worst-Case Error Bound
- - Statistical Worst-Case Error Bound
1000}
Worst case
500 error bound

N

600

400

Number of Summation Orders

200

10712 - 1071° 10° 108 107’
Error Magnitude 24
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Techniques for Recovering Reproducibility

Fixed reduction order

= Ensuring that all floating-point operations are evaluated in the
same order from run to run

Increased precision numerical types

= Mixed precision - e.g. use higher-precision types for sensitive
computations and standard types for less sensitive computations

Interval arithmetic
= Replace floating-point types with custom types representing
finite-length intervals of real numbers
Enhanced Summation Algorithms
= Compensated summation e.g., Kahan and composite precision

= Pre-rounded reproducible summation
25
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Techniques for Recovering Reproducibility

* Fixed reduction order

= Ensuring that all floating-point operations are evaluated in the
same order from run to run

* Increased precision numerical types

= Mixed precision - e.g. use higher-precision types for sensitive
computations and standard types for less sensitive computations

* |nterval arithmetic

= Replace floating-point types with custom types representing
finite-length intervals of real numbers

26
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Techniques for Recovering Reproducibility

Fixed reduction order

* Ensuring that all f! A g-point operations are evaluated in the same
order from run to .

Increased precision n. ‘e ‘~al types

= Mixed precision - e.g. us ) for sensitive
computations )(}—
Interval arithmetic R

/’

= Replace floating-point types with
finite-length intervals of real numbers

Enhanced summation algorithms
= Compensated summation e.g., Kahan and composite precision

.m types representing

= Pre-rounded reproducible summation
27
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Standard Summation: Definition

function StandardSummation(input)
var sum = 0.0

for 1 = 1 to input.length do {
sum = sum + input[i]
}

return sum

28
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Kahan Summation: Definition

function KahanSum(input)
var sum = 0.0
var ¢ = 0.0 = Holds error
for i = 1 to input.length do {
var y = input[i] - ¢ =
var t = sum + vy

c = (t - sum) - y — Capture error & add to operand

sum = t on next iteration

}

return sum

Kahan “Further Remarks on Reducing
Truncation Errors” (1964) 29
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Composite Precision: Definition

struct var2{
var val Value or result

var err Error approximation

e

var2 sum, V
var t = 0.0

Error carried

f L = 1 t ] ta L th d
or & o =hpu eng 2 ol through each

sum.val = sum.val + v.val _
t = sum.val — v.val operation
sum.err = sum.val -

(sum.val — t) + (v.val — t) +

sum.err + vV.err

L

retun sum

Taufer et al.” Improving Numerical Reproducibility and Stablléé
in Large-Scale Numerical Simulations on GPUs” (2010)
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Pre-rounded Summation: Definition
vl + v2: y

Until error < threshold I1 00000000
select extractor M - :

o

A

Ol O
-

Ml

ql= (vi+M)-M =4 A1
q2 ) (VZ i M) - M Emax Emin
ql +q2 -

\ -

LL 1 4 1 b

0010
N —

=
o
24°
=

rl1=vl-ql vimax ! |
r2=v2-q2 — M 2

Demmel and Nguyen “Parallel Vmax
Reproducible Summation” (2014) Nt :

Arteaga, Hoefler et al. “Designing Bit- ! | | N4 :
Portable High-Performance Applicatio I I
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Techniques for Reproducible Summation

Fixed reduction order

* Ensuring that all f! A g-point operations are evaluated in the
same order from O "IN

Increased precision 1. C ‘cal types

= Mixed precision - e.g. us. ) "tbles for sensitive computations
and floats everywhere else (J—
k7

Interval arithmetic ,

= Replace floating-point types with °
length intervals of real numbers

Enhanced summation algorithmse

= Compensate’ OST\-Y? composite precision

= Pre-rounded HOW 9 surnmation

.n types representing finite-

32
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Empirical Study: Cost

* Emulate simulation execution

= Run parallel sum of 1M doubles using MPI

= Perform partial sums independently

= Reduce by global sum with MPI_REDUCE
* Summation algorithms tested

= Standard (ST)

= Kahan (K)

= Composite Precision (CP)

= Pre-rounded (PR)

33
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Empirical Study: Cost

10"
—@l— ST
—e— K
100 | —ah— CP
—fe— PR
g 10" 3
|_
v
10_2 3
107

12 4 8 16 32
Number of Processes 34
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Error-free Transformations: Times

« 2-fold pre-rounding versions and varying vector sizes

[ dasum - Algo3 (K=2) |
| — Algo2 (K=2) - Algo 5 (K=3) |-

1

~X7

mmn e g e e

.t
.
.-
-------
-
.

~X4

S~ _w==="""" 1 Intel MKL library

................
&&&&&&&

Effective cost (xN)
O—WHAUNOTX0 OO
|
'y

100 1000

10000 100000 1e+06
Vector size
Demmel and Nguyen “Parallel Reproducible Summation” (2013) -

35
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Techniques for Reproducible Summation

E ?
* Enhanced st cible:
. CompensatHow reprodu

* Pre-roundec QW acC o

posite precision

36
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Empirical Study: Reproducible Accuracy

* Emulate sums expected in exascale simulations

= Shuffling summation order emulates nondeterministic
reduction tree

* Measure sensitivity of summation algorithms to:
= Changes in summation order
= Mathematical properties of summands

37
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Empirical Study: Reproducible Accuracy

* Emulate sums expected in exascale simulations

= Shuffling summation order emulates nondeterministic
reduction tree

* Measure sensitivity of summation algorithms to:
= Changes in summation order
= Mathematical properties of summands

* Interpret width of result interval as sensitivity

38
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Empirical Study: Reproducible Accuracy

Emulate sums expected in exascale simulations

= Shuffling summation order emulates nondeterministic
reduction tree

Measure sensitivity of summation algorithms to:
= Changes in summation order
= Mathematical properties of summands
Interpret width of result interval as sensitivity

Test summation algorithms: Standard (ST), Kahan (K),
Composite-Precision (CP), Pre-rounded (PR)

39
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Emulating Exascale Scenarios

Real Numbers Xo X4 X, X3 X, X
| ) ) 0 | ) |
| | | | 1 ] 1 | | | |
_ _ T T1 | | | ) -
Floating-point fix,) f(x,) f(x,) f(x,) fix,)  f(xs)

Non-determinism at exascale Roundoff errors
accumulate

{s;} 40
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Emulating Exascale Scenarios

Real Numbers Xo X4 X, X3 X, X
) ) } 0 ) ) |
_ | | | | 1] ] 1] | | | | _
- - - 11 11 | | I 11 1 .
Floating-point fixg)  flx,) f(x,) f(x,) fix,)  flxs)

Non-determinism at exascale

Roundoff errors
accumulate

»
>

width of interval

(=9

irreproducibility
41
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Characterizing Sets of Summands

|Sexact—=Si| (n—1) u- i—1 |7l

42
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Characterizing Sets of Summands

|Sexact_Sj‘ ?:1 |'CU’L‘
<(n—1)-u- 50

Critical Parameters

* Sjze:n

* Condition number: k
 Dynamic range: dr

43
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Taxonomyv of Values

Sample set of values dr k

{1.23e+32, 1.35e+32, 2.37e+32, 3.54e+32} 0 1
A A A NAa_ .
{-1.23e+16, -1.35e+16, -2.37e+16,-3.54e+16} | O
J/e+16, 3.41e+3, 4.32e+3, 3.14e+16 X

(3.14e+32, 1.59e+16, 2.65e+18, 3.58e+24} | 16 | 1
{2.505e+2, 2.5e+2, -2.495e+2, -2.5e+2} 0 | 1000
{5.00e+2, 4.99999¢-1, 1.0e-6, -4.995e+2} 8 | 1000

{5.00e+2, 4.99...99¢-1, 1.0e-14, -4.995¢e+2} 16 | 1000
{3.14e+8, 1.59e+8, -3.14e+8, -1.59e+8} 0 00
{3.14e+4, 1.59¢-4, -3.14e+4, -1.59e-4} 8 00
{3.14e+8, 1.59%-8, -3.14e+8, -1.59¢-8} 16 | oo




UNIVERSITY of DELAWARE

Taxonomyv of Values

Sample set of values dr k
{1.23e+32, 1.35e+32, 2.37e+32, 3.54e+32} 0 1
{1.23e-32, 1.35e-32, 2.37e-32, 3.54e-32} 0 1
{-1.23e+16, -1.35e+16, -2.37e+16,-3.54e+16} | O 1
{2.37e+16, 3.41e+8, 4.32e+8, 8.14e+16} 8 1
{3.14e+32, 1.59e+16, 2.65e+18, 3.58e+24} 16 1
{2.505e+2, 2.5e+2, -2.495e+2, -2.5e+2} 0 | 1000
{5.00e+2, 4.99999¢-1, 1.0e-6, -4.995e+2} 8 | 1000
{S.OOe+2, 4.99...99%-1, 1.0e-14, -4.995e+2} 16 | 1000
3.14e+8. 1.59e+8. -3.14e+8. -1.59%e+8 0 00
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Characterizing Sets of Summands

|Sexact_Sj| ?:1 |x7/|
< (n—1)-u- 700

Critical Parameters Proxy for...

* Size:n Concurrency
 Condition number: k q Subtractive cancellation
Alignment error

 Dynamic range: dr

46
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Empirical Study: Results

* Varying the shape of the reduction tree
= |ll-conditioned, high dynamic range values
= Balanced vs. unbalanced reduction trees
* Error variability within the parameter space
= nvs.k
= nvs.dr
= kvs.dr
* Summation algorithm selection
= @Given a variability threshold, which algorithm is needed

47
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Empirical Studies of Reproducible Accuracy

* Error variability within the parameter space

= kvs.dr

48
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Visualizing Degree of Reproducible Accuracy

{801’ o2 03

{x1, x2, .... xn

n
So =2| Xo(i)

{Sq 1:S0 2,5 5 -

N\

dr

sl Darker ==

error variability

}

0 — perm. of [n]

80_1 00 }

- €5.100 }

-/

More Variability sy
T

Values

Sum of
shuffled values

Multiple sums
of multiple
permutations

Errors w/r/t
GNU MPFR
result

Error
variability

49
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Condition Number vs. Dynamic Range

Parameter ranges: N = 10, k € [1, 10°], dr € [0, 32]
ST K cp

1.00e+06}- .

—
-z
= 8.89e+05L -
| -
QO  7.78e+05)
o]
E  667e+05) .
>
= 5.56e+05)
C  444e+05)
(@]
B 333e405)
©
C  2.22e+05}
(@]
O  11le+osf

1.00e+00}

0 3 7 10 14 17 21 24 28 32 o 3 7 10 14 17 21 24 28 32 0 3 7 10 1 17 A 2 28 2
Dynamic Range (dr) | Cell variability

0 1 2 3 4 5 6 7 8 9 xle-13
Standard Deviation

Compensated summation incrementally improves

reproducible accuracy 50
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Empirical Studies of Reproducible Accuracy

* Summation algorithm selection
= @Given a variability threshold, which algorithm is needed?

51
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{x1, x2, .... xn} Values
n
B _ Sum of
So = , %o O —Perm. of [n] shuffled values
Multiple sums
{80_1 ’80_2 ,30_3 S0_100 } of multiple
permutations
{80 1:€5 23 €5 3 +eune 80_100} Errors w/r/t
GNU MPFR
\\ l / result
: error variability Error
dr variability

Cell shade == algorithm keeps variability below threshold

ST K .CP

52
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Selecting a Sufficient Algorithm ST

Variability threshold = 5e-13

j> High

Medium

Low

Condition Number

1.00e+06

8.89e+05

7.78e+05

6.67e+05

5.56e+05

4.44e+05

3.33e+05

2.22e+05

1.11e+05

1.00e+00

7

10 14 17
Dynamic Range

21

24

28
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Selecting a Sufficient Algorithm

Variability threshold = 4.5e-13

—

High
)
o)
£
>
=
[
; ©
Medium =
©
[
(@]
(©)
Low

1.00e+06

8.89e+05

7.78e+05

6.67e+05

5.56e+05

4.44e+05

3.33e+05

2.22e+05

1.11e+05

1.00e+00

ST

7

10 14 17

Dynamic Range

21

24

28

32



UNIVERSITY of DELAWARE

Selecting a Sufficient Algorithm ST

Variability threshold = 4e-13 . . . .
1.00e+06

High

8.89e+05

ﬂ 7.78e+05

6.67e+05

5.56e+05

4.44e+05

Medium

Condition Number

3.33e+05

2.22e+05

1.11e+05

1.00e+00

0 3 7 10 14 17 21 24 28 32
Dynamic Range

Low
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Selecting a Sufficient Algorithm ST

Variability threshold = 3.5e-13 . .
1.00e+06

High

8.89e+05

7.78e+05

6.67e+05

—

5.56e+05 -

4.44e+05 1

Medium

Condition Number

3.33e+05 -

2.22e+05 -

1.11e+05 -

1.00e+00 -

0 3 7 10 14 17 21 24 28 32
Dynamic Range

Low
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Selecting a Sufficient Algorithm ST

Variability threshold = 3e-13
1.00e+06

High

8.89e+05

7.78e+05

6.67e+05

5.56e+05

—

Medium 4.44e+05

Condition Number

3.33e+05

2.22e+05

1.11e+05

1.00e+00

0 3 7 10 14 17 21 24 28 32
Dynamic Range

Low
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Selecting a Sufficient Algorithm ST

Variability threshold = 2.5e-13

1.00e+06
High
8.89e+05

7.78e+05

6.67e+05

5.56e+05

Medium 4.44e4+05 -

Condition Number

L

3.33e+05 -

2.22e+05 ]

1.11e+05 ]

1.00e+00 ]

0 3 7 10 14 17 21 24 28 32
Dynamic Range

Low
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Selecting a Sufficient Algorithm ST

Variability threshold = 1.5e-13
1.00e+06

High
8.89e+05

7.78e+05
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Selecting a Sufficient Algorithm ST
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Selecting a Sufficient Algorithm ST

Variability threshold = 5e-14

High

Medium

Low

Condition Number

1.00e+06

8.89e+05

7.78e+05

6.67e+05

5.56e+05

4.44e+05

3.33e+05

2.22e+05

1.11e+05

1.00e+00

0 3 7 10 14 17 21 24 28 32

Dynamic Range



UNIVERSITY of DELAWARE

Lesson Learned

We study an emulated scenario of global summation on
exascale platforms

Increasingly costly summation algorithms needed for
reproducible accuracy in certain regions of parameter space

= High concurrency, ill-conditioned, high dynamic range

Exascale applications need to maintain awareness of
mathematical properties of summands

= Adjust summation algorithms used to keep variability
below threshold
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Future Directions

* Can we achieve reproducible numerical accuracy by
intelligent runtime selection of reduction algorithms?
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