All-Pairs Abstraction
|
All-Pairs( array A[i], array B[j], function F(x,y) )
returns matrix M where
M[i,j] = F( A[i], B[j] )
|
The All-Pairs abstraction computes the Cartesian product of two sets,
generating a matrix where each cell M[i,j] contains the output of the function
F on objects A[i] and B[j]. You provide two sets of data files and a function
F that computes on them. You may optionally provide additional parameters to
control the actual computation(e.g. compute only part of the matrix). The
abstraction then executes the computation in parallel, automatically handling load balancing,
data movements, fault tolerance, and so on.
For More Information
Allpairs User's Manual
Download Allpairs
Getting Help with Allpairs
Publications
(Showing papers with tag allpairs. See all papers instead.)
|
Li Yu, Christopher Moretti, Andrew Thrasher, Scott Emrich, Kenneth Judd, and Douglas Thain, Harnessing Parallelism in Multicore Clusters with the All-Pairs, Wavefront, and Makeflow Abstractions, Journal of Cluster Computing, 13(3), pages 243-256, September, 2010. DOI: 10.1007/s10586-010-0134-7
|
|
Christopher Moretti, Hoang Bui, Karen Hollingsworth, Brandon Rich, Patrick Flynn, and Douglas Thain, All-Pairs: An Abstraction for Data Intensive Computing on Campus Grids, IEEE Transactions on Parallel and Distributed Systems, 21(1), pages 33-46, January, 2010. DOI: 10.1109/TPDS.2009.49
|
|